
ARMY RESEARCH LABORATORY

Common High Performance Computing Software Support
Initiative (CHS SI) Computational Fluid Dynamics (CFD)-6

Project Final Report: ARL Block-Structured Gridding Zonal
Navier-Stokes Flow (ZNSFLOW) Solver Software

Harris L. Edge
Jubaraj Sahu

Walter B. Sturek
Daniel M. Pressel
Karen R. Heavey

Paul Weinacht
Csaba K. Zoltani

Charles J. Nietubicz
Jerry Clarke
Marek Behr

Patrick Collins

ARL-TR-2084 FEBRUARY 2000

"*«**«^». 20000404 040
Approved for public release; distribution is unlimited.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-2084 February 2000

Common High Performance Computing Software Support
Initiative (CHSSI) Computational Fluid Dynamics (CFD)-6
Project Final Report: ARL Block-Structured Gridding Zonal
Navier-Stokes Flow (ZNSFLOW) Solver Software

Harris L. Edge
Jubaraj Sahu
Karen R. Heavey
Paul Weinacht
Weapons & Materials Research Directorate, ARL

Walter B. Sturek
Daniel M. Pressel
Csaba K. Zoltani
Charles J. Nietubicz
Corporate Information & Computing Directorate, ARL

Jerry Clarke
Raytheon Systems Company

Marek Behr
Rice University

Patrick Collins
U.S. Department of the Treasury

Approved for public release; distribution is unlimited.

Abstract

This report presents an overview of the software developed under the
common high performance computing software support initiative (CHSSI),
computational fluid dynamics (CFD)-6 project. Under the project, a zonal
Navier-Stokes flow solver tested and validated via years of productive
research at the U.S. Army Research Laboratory was rewritten for scalable
parallel performance on both shared memory and distributed memory high
performance computers. At the same time, a graphical user interface
(GUI) was developed to help the user set up the problem, provide real-
time visualization, and execute the solver. The GUI is not just an input
interface but provides an environment for the systematic, coherent
execution of the solver, thus making it a more useful, quicker and easier
application tool for engineers. Also part of the CHSSI project is a
demonstration of the developed software on complex applications of
interest to the Department of Defense (DoD). Results from computations
of 10 brilliant antitank (BAT) submunitions simultaneously ejecting from a
single Army tactical missile and a guided multiple launch rocket system
missile are discussed. Experimental data were available for comparison
with the BAT computations. The CFD computations and the
experimental data show good agreement and serve as validation for the
accuracy of the solver. The software has been written with large memory
requirements and scalability in mind. For a grid size of 59 million points,
the performance achieved on an Silicon Graphics, Incorporated, Origin
2000 with 96 processors is 18 times the performance that could be
achieved via a computer with the processing speed of a single Cray C-90
processor.

ACKNOWLEDGMENTS

The authors would like to thank the High Performance Computing Center at the U.S. Army
Research Laboratory's major shared research center at Aberdeen Proving Ground, Maryland, and
the Naval Research Laboratory distributed center in Washington, DC, for the use of their
computing resources.

An acknowledgment is given to others who at some point participated in the zonal Navier-
Stokes flow (ZNSFLOW) user meetings and provided feedback and/or input which helped in the
development of the ZNSFLOW software. Those who have participated are Clint Housh of the
Naval Air Warfare Center, Mark McKelvin, and Olu Olatidoye of Clarke Atlanta University in
Georgia, Steve Scherr of the Air Force Research Laboratory in Florida, and Andrew Wardlaw of
the Naval Surface Weapons Center in Virginia.

The authors appreciate the support of the Department of Defense common high
performance computing software support initiative (CHSSI) program members and evaluators.
An acknowledgment is given to those participants in the CHSSI program directly involved with
the ZNSFLOW project: Jay Boris, the computational fluid dynamics critical technical area leader
for CHSSI and ZNSFLOW alpha tester, and David Fife, ZNSFLOW alpha and beta tester.

The authors would like to express their appreciation for the time and expertise of Dixie
Hisley and Nancy Nicholas for their technical and editorial reviews, respectively.

in

INTENTIONALLY LEFT BLANK

IV

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES «

EXECUTIVE SUMMARY 1

1. INTRODUCTION 3

2. THE ZNSFLOW SOLVER 3

2.1 Governing Equations and Solution Technique 4
2.2 Chimera Composite Grid Scheme 5
2.3 Distributed and Shared Memory ZNSFLOW 6
2.4 ZNSFLOW Validation 17

3. THE DISTRIBUTED INTERACTIVE COMPUTING ENVIRONMENT. . . 18

4. ZNSFLOW DEMONSTRATION CASES 21

4.1 Computations for Guided MLRS Missile 21
4.2 Computations for BAT Submunitions Ejecting From ATACM 24

5. ZNSFLOW USER CASES 28

6. CONCLUDING REMARKS 28

REFERENCES 31

APPENDICES

A. Turbulence Models Used in ZNSFLOW 33
B. Computer Science Issues Behind the Success of CHSSI Project CFD-6 ... 39
C. ZNSFLOW CHSSI Project Milestones 53

DISTRIBUTION LIST 61

REPORT DOCUMENTATION PAGE 65

INTENTIONALLY LEFT BLANK

VI

LIST OF FIGURES

Figure Page

1. Inter-grid Communications 6

2. 1-Million-Point Key Technical Area (KTA) Computational Grid 9

3. Pressure Coefficient Comparison 9

4. Graph of KTA Timing Data Speedup 10

5. Performance Results for 1-, 10-, and 59-Million Grid Point KTA Data Sets 11

6. Data Orientation and Activity During ZNSFLOW Phases for the Last Zone of
the Benchmark Problem 13

7. Data Distribution During ZNSFLOW Phases 14

8. Graph of Scalable Performance of Distributed Memory ZNSFLOW Solver
on Several Platforms for the 1-Million-Point Benchmark Case 16

9. Graph of Scalable Performance of Distributed Memory ZNSFLOW Solver
on Several Platforms for the 10-Million-Point Benchmark Case 16

10. Ogive Cylinder: Mach Number Contours for the 1-Million-Point Case 17

11. DICE GUI Windows 19

12. Normalized Pressure Contours at Mach 1.6 and 0° Angle of Attack 22

13. Normalized Pressure Contours at Mach 1.6 and 10° Angle of Attack 23

14. Particle Traces at Various Mach Numbers and Angles of Attack 24

15. Diagram of the Multi-body System 25

16. Grids for the BAT Sub-Munition Dispensing From ATACM 25

17. Configuration A and B Sub-Munition Location 26

18. Normalized Surface Pressure Contours for Configuration A 26

19. Normalized Surface Pressure Contours for Configuration B 26

20. Locations Where Experimental Data Were Collected 26

21. Pressure Coefficient Versus BAT Length for BAT Surface Facing ATACM 26

22. Pressure Coefficient Versus BAT Length for BAT Surface Facing Away From
ATACM 26

23. Force and Moment Coefficients for Configuration A 27

24. Drag Coefficients for Configuration A 27

25. Mach Contours of THAAD Missile Flow Field at 10° Angle of Attack 28

26. Surface Pressure Contours on Sea Sparrow Missile 28

Vll

INTENTIONALLY LEFT BLANK

Vlll

LIST OF TABLES

Table Page

1. KTA Timing Data Speedup 10

2. Predicted Speedup for a Loop With 15 Units of Parallelism 12

3. Scalable Performance of Distributed Memory ZNSFLO W Solver on Several
Platforms in Time Steps per Hour for the 1-Million-Point Case 15

4. Scalable Performance of Distributed Memory ZNSFLOW Solver on Several
Platforms in Time Steps per Hour for the 10-Million-Point Case 15

IX

INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

Under the auspices of the common high performance computing software support initiative
(CHSSI) computational fluid dynamics (CFD)-6, a suite of codes, now called the zonal Navier-
Stokes flow (ZNSFLOW) solver, was developed to enable the calculation of aerodynamic
problems of Army interest. The suite includes a zonal Navier-Stokes solver and a graphical user
interface (GUI) environment for problem setup, interactive visualization, and solver execution.
The objectives of the effort were to

1. Develop a scalable version of ZNSFLOW;

2. Add features that would enhance applicability and ease of use;

3. Demonstrate the design utility of the software by solving current Department of Defense
(DoD) priority viscous flow problems.

Based on a solver known as F3D (a fully vectorized FORTRAN1 77 code), the code was
rewritten to provide scalable performance on a variety of architectures. Enhancements included
dynamic memory allocation and optimized cache management. Emphasis was placed on user
friendliness and ease of use. The distributed interactive computing environment GUI was written
to allow some of ZNSFLOW s complex features to be easily employed and to incorporate menu-
based help. For example, the solver allows for one-on-one overlaps between grid zones in any
direction. The GUI makes the setup for this generalized data exchange intuitive and provides
simple error-checking capabilities. Boundary conditions are generalized and can be applied to
any surface or line. In addition, the solver can perform computations with a Chimera composite
grid discretization technique. The difficulty of using turbulence models with the Chimera
technique was overcome by the implementation of a point-wise turbulence model.

ZNSFLOW was designed to operate in both a shared and a distributed memory computer
environment. The shared memory version of the solver relies on loop-level parallelism with
optimized cache management. The distributed memory version uses the shared memory
(SHMEM) library for the Cray T3E and Origin 2000 computers and the message-passing
interface (MPI) library for the IBM scalable parallel (SP) computers.

The code has been successful in calculating flow fields, starting with a simple flat plate,
flows around missiles at large angles of attack, guided multiple launch rocket system, and the flow
field around ten brilliant antitank sub-munitions ejected from an Army tactical missile. Typically,
for a grid size of 59 million elements, the performance achieved on a Silicon Graphics, Incorporated,
Origin 2000 with 96 processors is 18 times that on a single Cray C-90 processor. Experimental
verification of the flow predictions gives confidence in the capability of the code.

Formula Translator

INTENTIONALLY LEFT BLANK

COMMON HIGH PERFORMANCE COMPUTING SOFTWARE SUPPORT INITIATIVE
(CHSSI) COMPUTATIONAL FLUID DYNAMICS (CFD)-6 PROJECT FINAL REPORT:

ARL BLOCK-STRUCTURED GRIDDTNG ZONAL NAVJER-STOKES
FLOW (ZNSFLOW) SOLVER SOFTWARE

1. INTRODUCTION

The thrust of the work described here is to further develop an existing computational fluid
dynamics (CFD) code and make it more accessible for engineers. The code was developed as part
of the common high performance computing software support initiative (CHSSI) and is now called
the zonal Navier-Stokes flow (ZNSFLOW) solver. ZNSFLOW is actually a suite of codes that
basically includes a zonal Navier-Stokes solver and graphical user interface (GUI) environment for
problem setup, interactive visualization, and solver execution. The primary goals of the ZNSFLOW
CHSSI project are to (a) develop a scalable version of a zonal Navier-Stokes solver, (b) add features
to the ZNSFLOW software, which allow general applicability and ease of use, and (c) demonstrate
the design utility of the scalable ZNSFLOW software by solving current Department of Defense
(DoD) priority viscous flow problems. In keeping with these goals, this report gives a broad
overview of the ZNSFLOW CHSSI project, the ZNSFLOW solver and its capabilities, as well as
the GUI environment. Some results from test cases are presented to demonstrate recent applications
of ZNSFLOW.

2. THE ZNSFLOW SOLVER

The ZNSFLOW solver was originally known as F3D, a fully vectorized (FORTRAN2) 77
code used on Cray vector computers such as the C-90.[l,2] During the CHSSI program, it has
been rewritten to provide scalable performance on a number of computer architectures. Other
added enhancements include dynamic memory allocation and highly optimized cache management.
Aside from the performance aspects, the solver has been provided with a number of enhancements

to make it more user friendly and capable of performing flow field computations for complex
configurations of interest to DoD. The solver was written to operate with and without a GUI
environment. A large portion of the effort spent on the ZNSFLOW CHSSI project went toward
increasing ease of use and general applicability of the ZNSFLOW solver. The distributed
interactive computing environment (DICE) GUI allows some of the ZNSFLOW solver's more
complex features to be easily employed. For example, the solver allows for one-to-one overlaps
between grid zones in any direction. The GUI makes the setup for this generalized data exchange
intuitive and provides some simple error-checking capabilities to catch mistakes in creating the
input file. Many of the boundary conditions are generalized and can be called for any surface or
line. In addition, the solver can perform computations with the Chimera composite grid
discretization technique.[3-5] By using the Chimera technique, one can greatly simplify the grid
topology and grid generation for very complex systems. One of the drawbacks in using the
Chimera technique has been the increased complexity and corresponding confusion in applying a
turbulence model. A Chimera model can be composed of multiple zones, with each zone

2 Formula Translator

possibly having a unique grid topology. Most turbulence models have specific directional,
orientation, or distance-related requirements for correct application. For a complex Chimera
model, applying a turbulence model can be a very complicated process. This problem has been
addressed in ZNSFLOW by the installation of a point-wise turbulence model [6] that is not
orientation specific. This greatly simplifies the setup of the turbulence model. Wall location
information is supplied when the wall boundary conditions are set by the user through the GUI.
A conventional Baldwin-Lomax turbulence model [7] is also available.

2.1 Governing Equations and Solution Technique

The complete set of time-dependent, Reynolds-averaged, thin layer, Navier-Stokes
equations is solved numerically to obtain a solution to this problem. The numerical technique
used is an implicit, finite difference scheme. Steady state calculations are made to numerically
compute the flow field.

2.1.1 Governing Equations

The three-dimensional (3-D), time-dependent, generalized geometry, Reynolds-averaged,
thin layer, Navier-Stokes equations for general spatial coordinates % r\, and C, can be written as
follows [1]:

drq + df F + ö„G + af H = Re-1Sc S, (1)

in which
\ = £(x, y, z, t) - longitudinal coordinate;

r| = r|(x, y, z, t) - circumferential coordinate;
C, = £(x, y, z, t) - nearly normal coordinate; and
x = t - time

In Equation (1), q contains the dependent variables (density, three velocity components, and

energy), and F, G, and H are flux vectors. The thin layer approximation is used here, and the
viscous terms involving velocity gradients in both the longitudinal and circumferential directions
are neglected. The viscous terms are retained in the normal direction, £, and are collected into the
vector S. In the wake or the base region, similar viscous terms are also added in the stream-wise
direction, £. For computation of turbulent flows, the turbulent contributions are supplied through
an algebraic eddy viscosity turbulence model developed by Baldwin and Lomax [7] or a point-wise
turbulence model [6]. A technical discussion of the turbulence models is given in Appendix A.

2.1.2 Numerical Technique

The implicit, approximately factored scheme for the thin layer, Navier-Stokes equations
using central differencing in the r\ and C, directions and an upwind scheme in \ is written in the
following [2]:

[l + ibh$ (Ä+)n + ibh^cn-ibhRe'' S(J'1 M" J~ibDi lj

x [l + ibh«?/ (Ä")n + ibh^,Bn-ibDi |JAQ

(2)

= -ibAt{^b[(F+)n-F:] + ^f[(F)n-F;] + ^(G-GJ

+ ^(Hn-HJ-Re'^(s"-Sj}-ibDe(Q-Qj,

in which h = At or (At)/2. The free-stream fluxes are subtracted from the governing equation to
reduce the possibility of error from the free-stream solution corrupting the converged solution.
Here, 6 is typically a three-point, second order, accurate central difference operator; 8 is a
midpoint operator used with the viscous terms; and the operators 8% and 8\ are backward and

forward three-point difference operators. The flux F has been eigensplit and the matrices
A, B, C, and M result from local linearization of the fluxes about the previous time level. Here,
J denotes the Jacobian of the coordinate transformation. Dissipation operators De and Di are used
in the central space differencing directions. The smoothing terms used in the present study are of
the form

Del =(At) J"1
n

s28p(ß) ßS + £4ö-^s3
l,J>

and

in which

Dil, = (At) j"1 [e2Sp(B)ßS + 2.5S4öp(P) 8]\n J,

ß = . '?*'.
l(l + £2) P

and p(B) is the true spectral radius of B. The idea here is that the fourth difference will be
adjusted downward near shocks (e.g., as ß gets large, the weight on the fourth difference drops
while the second difference adjusts upward).

2.2 Chimera Composite Grid Scheme

The Chimera overset grid technique greatly adds to the number of applications to which
the ZNSFLOW solver can be applied. Although the ZNSFLOW solver can be applied to
computational meshes with Chimera topology, note that the software used to create such
computational meshes is not included with the ZNSFLOW suite of software. The Chimera over-
set grid technique, which is ideally suited to multi-body problems,[8-10] involves generating
independent grids about each body and then over-setting them onto a base grid to form the
complete model. This procedure reduces a complex multi-body problem into a number of
simpler sub-problems. An advantage of the over-set grid technique is that it allows computational
grids to be obtained for each body component separately and thus makes the grid generation
process easier. Because each component grid is generated independently, portions of one grid may

lie within a solid boundary contained within another grid. Such points lie outside the computational
domain and are excluded from the solution process. Equation (2) has been modified for Chimera
over-set grids by the introduction of the flag ib to achieve just that. This ib array accommodates the
possibility of having arbitrary holes in the grid. The ib array is defined so that ib = 1 at normal grid
points and ib = 0 at hole points. Thus, when ib = 1, Equation (2) becomes the standard scheme, but

when ib = 0, the algorithm reduces to A$" = 0 or £n+1 =&n, leaving & unchanged at hole points.
The set of grid points that forms the border between the hole points and the normal field points is
called inter-grid boundary points. These points are revised by interpolating the solution from the
overset grid that created the hole. Values of the ib array and the interpolation coefficients needed
for this revision are provided by a separate algorithm.[3]

Figure 1 shows an example in which the parent missile grid is a major grid, and the
brilliant anti-armor (BAT) sub-munition grid is a minor grid. The sub-munition grid is completely
overlapped by the missile grid, and thus, its outer boundary can obtain information by interpolation
from the missile grid. Similar data transfer or communication is needed from the sub-munition
grid to the missile grid. However, a natural outer boundary that overlaps the sub-munition grid
does not exist for the missile grid. The over-set grid technique creates an artificial boundary or a
hole boundary within the missile grid, which provides the required path for information transfer
from the sub-munition grid to the missile grid. The resulting hole region is excluded from the
flow field solution in the missile grid.

Missile(Major) Domain Submunition(Hinor) Domain

Artificial Boundary in Parent Domain

Figure 1. Inter-grid Communications.

2.3 Distributed and Shared Memory ZNSFLOW

The ZNSFLOW software has been targeted to operate on both shared memory and distributed
memory architectures. In order to fulfill the CHSSI program requirement that the ZNSFLOW
solver be scalable on applicable computers, it was decided to create two versions of the ZNSFLOW
solver, with one version optimized to operate on shared memory architectures and the other
optimized to operate on distributed memory architectures. The shared memory version of the solver
employs loop-level parallelism that has highly optimized cache management. The distributed
memory version is not as fully developed as the shared memory version and is currently not able to

perform computations using the Chimera scheme. Once the ZNSFLOW software is complete, the
differences between the multiple versions of the solver should be transparent to the user. Both
versions of the ZNSFLOW solver apply the same unsteady Reynolds-averaged thin layer Navier-
Stokes equations, as described previously, to compute flow field solutions with no changes in the
time-tested solution algorithm. However, the versions use different programming techniques to
achieve scalable performance for their intended computer architectures. The immediately following
sections (2.3.1 and 2.3.2) describe some of the technical aspects and performance of the distributed
and shared memory versions of the ZNSFLOW solver.

2.3.1 Shared Memory ZNSFLOW

Many modern parallel computers are now based on high-performance reduced instruction
set computing (RISC) processors. The shared memory version of ZNSFLOW is written to
perform efficiently on these computers. The key breakthrough in determining a methodology for
optimizing and parallelizing the ZNSFLOW solver was the realization that many of the new
systems seem to lend themselves to the use of loop-level parallelism. This strategy offers the
promise of allowing the solver to be parallelized with absolutely no changes in the algorithm.
Note that it is difficult to efficiently use loop-level parallelism on anything but a shared memory
architecture and only recently have vendors started shipping shared memory architectures that are
based on RISC processors with aggregate peak speeds exceeding a few Gflops3. Parallel high
performance computers (HPCs) often employ approximately 100 RISC processors. With the
speed of RISC processors, it may not be necessary to use more than 100 processors to meet most
users' needs. However, for this assumption to be true, a reasonable percentage of the peak
processing speed of each processor must be used. Programming for the use of a limited number
of powerful processors (e.g., 10 to 100 processors) has some advantages over programming for a
computer that employs approximately 1,000 relatively weaker processors. Using significantly
fewer processors can

1. Allow the use of parallelization techniques that may support only a limited degree of
parallelism;

2. Decrease the extent to which the parallel efficiency of the algorithm is degraded;

3. Decrease the percentage of the run time spent passing messages; and

4. Decrease the effect of Amdahl's Law.[ll]

Several methods were used to improve code performance for computers employing
multiple RISC processors. The goal was to achieve both serial and parallel efficiency. To
achieve high serial efficiency on a RISC processor, the programmer must be mindful of the cache
miss rate and the translation "look-aside" buffer (TLB) miss rate. Some of the programming
techniques used to accomplish this are also beneficial to the program's parallel performance.
Some of the programming techniques used to optimize code performance are described next.

' One billion floating point operations per second

• Indices of arrays were reordered to improve spatial and temporal memory access locality.
For example, if there is a long complex loop that employs values associated with a single data
point, then it is more efficient to store those values in array Q(N,J,K,L) than in array Q(J,K,L,N)
in which N is some small integer such as 5 or 6.

• Multiple arrays used as a group were merged. For example, if the arrays XX(J,K,L),
XY(J,K,L), and XZ(J,K,L) are needed for the same equation, they should be merged to form the
single array XXYZ(3,J,K,L).

• Loops in nested loops were reordered. For example, if one has a nested loop such as

DO... M=l,5
DO ... N=l,5

" DO... L=1,LMAX
DO... K=1,KMAX
Several lines of code involving arrays such as A(K,L,N,M).

It will probably produce far fewer cache and TLB misses if the loop nest can be rewritten as

DO ... L=1,LMAX
DO... K=1,KMAX
DO...M=l,5

DO ... N=l,5
Several lines of code that now involve arrays such as A(N,M,K,L).

This will have the added benefit of potentially supporting more aggressive forms of loop unrolling.

• Matrix transposition operations for invariant/relatively invariant arrays were kept in
memory between uses and were revised only when needed.

• Loops were sized by data requirements to allow sets of operations to be performed so that
the data used were "locked" into the cache memory. This technique is not very beneficial for small
cache sizes. For good efficiency, an "off-chip" cache size of at least 1 megabyte (MB) is needed.
Properly sizing the loops virtually eliminated cache misses associated with scratch arrays.

Note that the sample computer code and variables are for the FORTRAN language in which
most of the solver is written. If a different computer language, such as C is used, the array
indices and loops may need to be ordered differently for peak efficiency. For a more formal
discussion of how and why the above programming techniques are used to improve code
performance, refer to Appendix B and Pressel.[12]

A generic missile configuration was used for many of the tests of the parallelized code. In
these tests, a 1,000,000-point grid (see Figure 2) was used to check the accuracy of the results.
The computed results obtained with the parallelized code were compared with those obtained using
the vectorized code on a Cray C-90. These computed results were compared with the experimental
data obtained from the Defense Evaluation and Research Agency (DERA), United Kingdom, for
the same configuration and test conditions.[13,14] For this case, the computation on the C-90

used 18 mega-words (144 MB) of memory and approximately 7.5 hours of central processing unit
(CPU) time. Once the accuracy of the computed results was verified, performance studies were
conducted for grid sizes ranging from 1 to 59 million grid points. Figure 3 shows the
circumferential surface pressure coefficient distribution of the missile at a selected longitudinal
station. [14] Computed results from both vectorized (C-90) as well as the parallelized versions of
the code are shown to lie on top of one another and are thus in excellent agreement.

Results were obtained by using a highly efficient serial algorithm as the starting point and
taking great care not to make any changes in the algorithm. Initial efforts to run the vector-
optimized version of this code on one processor of a Silicon Graphics, Incorporated (SGI) Power
Challenge (75-MHz R8000 processor) proved to be extremely disappointing. After aggressively
tuning the code for a low-cache miss rate and good pipeline efficiency, the authors achieved a
factor of 10 improvement in the serial performance of this code. At this point, the percentage of
peak performance from the RISC-tuned code using one processor on the SGI Power Challenge
was the same as the vector-tuned code on one processor of a Cray C-90.

X/D =3.5

cP

-0.2

• Experiment
- C90
OOrlBln2000

_i—i—i—u
0.0 30.0 60.0 90.0 120.0 150.0 180.0

Phi(degrees)

Figure 2. 1-Million-Point Key Technical Area (KTA) Figure 3. Pressure Coefficient Comparison.
Computational Grid. [13,14]

A key factor was the observation that processors with a large external cache (e.g., 1 to 4 MB in
size) could enable the use of optimization strategies that simply were not possible on machines
such as the Cray T3D and Intel Paragon which only have 16 kilobytes of cache per processor.
This relates to the ability to "size" scratch arrays so that they will fit entirely in the large external
cache. This can reduce the rate of cache misses associated with these arrays, which go all the way
back to main memory, to less than 0.1% (the comparable cache miss rates for machines such as
the Cray T3D and Intel Paragon could easily be as high as 25%). The immediately preceding data
(serial performance and cache miss rate) were obtained from a highly optimized version of the
F3D code. ZNSFLOW uses most of the solver coding from this optimized FORTRAN-only
version of F3D. However, the shared memory version of ZNSFLOW also employs C language
coding primarily to control the main integration loop of the solver, allocate dynamic memory, and

communicate with DICE software. Thus, there are some differences in the performance of
ZNSFLOW and the previously mentioned optimized version of F3D. Figure 4 shows a graphical
comparison of the "speedup" for the latest version of ZNSFLOW running on an SGI Origin 2000
(300-MHz R12000 processor) versus the vector version of the original F3D code running on a
single Cray C-90 processor. The data graphed in Figure 4 are presented in Table 1. Note that the
SGI Origin execution time for the 1- and 59-million-point cases was acquired through actual time
measurement of ZNSFLOW execution. However, only the 1-million-point case was executed on
the Cray C-90. The performance of the 59-million-point case for a single Cray C-90 processor
was estimated. Figure 5 displays ZNSFLOW performance graphs for 1-, 10-, and 59-million grid
point KTA data sets.

| Speedup Relative to 1 SGI Origin Processor (1 Million Points)

I Speedup Relative to 1 Cray C-90 Processor (1 Million Points)

| Speedup Relative to 1 SGI Origin Processor (59 Million Points)

| Speedup Relative to 1 Cray C-90 Processor (59 Million Points)

16 32 64 96

PEs

Figure 4. Graph of KTA Timing Data Speedup.

Table 1. KTA Timing Data Speedup

Grid Size (in millions
of points) Number of Processors

Speedup Relative to
One Origin 2000

Processor
Speedup Relative to
One C-90 Processor

1 16 8.3 6.0
1 32 12.0 8.6
1 64 16.0 11.6

59 32 21.5 6.3
59 64 46.8 14.8
59 96 57.8 18.3

10

B1 Million Point Data Set □ 10 Million Point Data Set

400 f

350

300

250

200

150

100

50

"36Ö]

304

-222r2-

-425T2-

-67-
35.75

7.35 n T
8 16 32 48 64

PEs

5a. Performance for 1-million-point data set. 5b. Performance for 10-million-point data set.

]59 Million Point Data Set

75,16

5c. Performance for 59-million-point data set.

Figure 5. Performance Results for 1-. 10-. and 59-Million Grid Point KTA Data Sets.

While linear speedup is desired, it is generally impossible to obtain linear speedup using
loop-level parallelism. The best that can be achieved is a curve with a staircase effect. Because of
the limited number of graphed computer timings in Figure 5, the staircase effect is only evident in
one graph, the 59-million-point data set timings shown in Figure 5c. For 64 and 80 processors, the
number of time steps per hour is nearly identical. A performance increase is shown when the
number of processors is raised to 96. The source of this effect is the limited parallelism (especially
when working with 3-D codes) associated with loop-level parallelism and is the basic result of
integer division. Table 2 demonstrates this effect. Using the data in Table 2 as an example, one
can see that the time to complete a case remains the same when 8 to 14 processors are used.
When 15 processors are used, the computation will theoretically require only half the time of a
computation using 14 processors. From a different perspective, the data in Table 2 show that the
amount of time the computation requires for completion is the same for 8 to 14 processors.

11

Therefore, when one is given the option of using 8 to 14 processors, theoretically, the most
efficient number of processors to use is 8. These points should be kept in mind to aid in
determining efficient numbers of processors for use in actual computations.

Table 2. Predicted Speedup for a Loop With 15 Units of Parallelism

Number of
processors

Maximum Units of
Parallelism Assigned
to a Single Processor

Predicted Loop-
Level Parallelism

Speedup

1 15 1.000

2 8 1.875

3 5 3.000

4 4 3.750

5 to 7 3 5.000

8 to 14 2 7.500

15 1 15.000

2.3.2 Distributed Memory ZNSFLOW

The ZNSFLOW distributed memory code is the message-passing implementation of
ZNSFLOW. To better explain the parallelization issues, an overview of the typical ZNSFLOW
computation steps is given next. All operations proceed again on a zone-by-zone basis, with
inactive zone data stored either in memory or on a fast mass storage device. A single zone is
constructed of a regular NJxNKx NL block of cells aligned with 7, K, and L directions. The /
direction is assumed to be stream wise and is treated semi-implicitly with two solver sweeps in
the J + and J' directions. During the J + sweep, for each consecutive stream-wise plane, the grid
points are coupled in the L direction, while they are treated independently in the K direction.
This requires a solution of K tri-diagonal systems of size L with 5x5 blocks. In the J ~ sweep,
the roles are reversed, with the coupling present in K direction only and L block-tri-diagonal
systems of size K. Before the sweeping can commence, a volume calculation of the right-hand
side (RHS) must take place (see Figure 6). An efficient parallel implementation of these two
distinct computation phases, RHS formation, and solver sweeps, is crucial to the overall
effectiveness and scalability of the code.

Between the two computation-intensive stages of the code, the RHS formation yields itself
to parallelization most easily. This is a volume computation, in which each grid point is operated
independently, with only older values at neighboring points being required to complete the
computation. The entire set of zone cells can be distributed over the available processing
elements (PEs) in an arbitrary manner. However, for the sake of subsequent solver computations,
it makes sense to decompose only K and L grid dimensions, leaving an entire J dimension
associated with a single PE. The K-L plane is mapped onto a rectangular grid of all PEs. To

12

avoid repetition of inter-processor transfers, each rectangular portion of the K-L plane also
contains two layers of "ghost" points that track the two closest sets of values in the sub-grids
belonging to neighboring PEs.

6a. RHS volume computation 6b. J + sweep 6c. /"sweep

Figure 6. Data Orientation and Activity During ZNSFLOW Phases for the Last Zone of the
Benchmark Problem.

The parallelization of the solver sweeps is not as straightforward. The algorithm requires
sequential processing in the J direction and can also be simultaneously parallelized in both K-L
directions, only at a greatly added computational cost, e.g., via a cyclic reduction algorithm. An
alternate method is to accept serial treatment of the J and L directions (J and KforJ' sweep) and
to devote all PEs to parallelizing the K dimension (L for J' sweep). This approach has an
obvious disadvantage, since the scalability is not maintained as the number of PEs exceeds either
the NK or NL zone dimensions. In typical computations, however, the number of PEs and the
zone dimensions are matched so that the problem does not arise. Therefore, for the solver
sweeps, the desired data distribution has the entire J and L dimensions associated with a single
PE, and the K dimension is decomposed among all available PEs for the J + sweep. J and K
dimensions are associated with a single PE and the L dimension distributed for the J' sweep.
This requires repeated reshaping of a small number of arrays between the original and two
solver-specific layouts (see Figure 7). A number of smaller parallelization issues had to be
resolved as well, including parameter reading and broadcasting among PEs, efficient disk
input/output (I/O), and exchange of boundary data between zones.

13

7a. J + sweep 7b. RHS volume computation 7c. /"sweep

Figure 7. Data Distribution During ZNSFLOW Phases.

The initial attempt to port the ZNSFLOW code to a scalable architecture employed the Cray
T3D and CRAFT (not an acronym) shared memory programming model. The advantages of code
maintainability and ease of transition were offset by the poor performance, and alternate
approaches were explored. The more difficult task of rewriting the code in a message-passing
framework was undertaken, and the parallel virtual machine (PVM)-based code provided initial
speedups. The reshaping of the arrays during solver sweeps was, however, a difficult target for
efficient implementation when two-sided PVM communication was used. A much better solution
was found in the form of the one-sided shared memory (SHMEM) Cray communication libraries.
In addition to eliminating concerns about deadlocking, the use of SHMEM reduces message
latency and increases bandwidth. Apart from the communication issues, some scalar optimization
of the code was attempted in order to extract a reasonable fraction of peak speed on cache-
constrained architectures, but that aspect still leaves something to be desired. A variation based on
the message-passing interface (MPI) library has since been added to the code base in order to
ensure portability to platforms that do not support SHMEM, such as IBM SP and the Sun HPC. It
is anticipated that both the SHMEM and MPI portions will be replaced with a single one-sided
MPI-2 version as this standard becomes widely accepted.

Speed and scalability of the message-passing code is tested on three architectures, using
Mach 1.8 flow past an ogive cylinder at a 14° angle of attack on a three-zone 1-million-point
coarse grid, and the same geometry at Mach 2.5 on a 10-million-point fine grid. The results are
listed in terms of time steps per hour in Tables 3 and 4 and are shown in graphical form in
Figures 8 and 9. The Cray T3E and SGI Origin platforms use the SHMEM-based version of
ZNSFLOW, while the IBM SP employs the less efficient MPI-based version. For comparison,
the Cray C-90 version of the code achieved 227 time steps per hour for the 1-million-point case.
As expected, the plots show better scalability for the refined grid than for the coarse one, as parts
of the current implicit solver contain parallelism only of the order of K or L dimensions. These
dimensions are 75 and 70, respectively, for the coarse grid, and 180 and 140 for the refined one.

14

The graphs exhibit visible notches around 70 and 75 PEs for the coarse grid and around 70 PEs
for the fine grid; these are thresholds at which the integer number of points per PE (for the loops
with KoxL parallelism) decreases by one. A number of predictable secondary gradients in
performance occur as the integer number of points per PE changes for the K-L layouts. A sample
Mach number field at the conclusion of the 1-million-point simulation is shown in Figure 10.

Table 3. Scalable Performance of Distributed Memory ZNSFLOW Solver on Several
Platforms in Time Steps per Hour for the 1-Million-Point Case

PEs T3E-1200 02K (300 MHz) SP (160 MHz)
8 349 382 199
16 616 618 288
24 888 838 335
32 1062 882 342
40 1324 989 374
48 1431 1083 420
56 1642 1161 428
64 1705 1050 423
72 2141 1326 405
80 2280 1382 420
88 2443 1320 396
96 2478
104 2673
112 2711
120 2914
128 2948

Table 4. Scalable Performance of Distributed Memory ZNSFLOW Solver on Several
Platforms in Time Steps per Hour for the 10-Million-Point Case

PEs T3E-1200 02K (300 MHz) SP (160 MHz)
16 70 41
24 99 84 54
32 127 97 62
40 152 113 72
48 179 142 81
56 190 134 84
64 203 133 89
72 248 158 93
80 247 157 94
88 276 153 95
96 298
104 317
112 337
120 355
128 327

15

|T3E-120Q □o2K(300MHli BlMI SP (160 MHlj |

•t »6 10« Iti 120 12«

Figure 8. Graph of Scalable Performance of Distributed Memory ZNSFLOW Solver on Several
Platforms for the 1-Million-Point Benchmark Case.

|T3E-1200 Qo2K (300 MHij EQlBH SP (130 MHI) |

1 • 1« 2* 32 40 «3 66 6* 72 30 33 06 10* 112 120 123

Figure 9. Graph of Scalable Performance of Distributed Memory ZNSFLOW on Several
Platforms for the 10-Million-Point Case.

16

Figure 10. Ogive Cylinder: Mach Number Contours for the 1-Million-Point Case.

2.4 ZNSFLOW Validation

The predecessor of ZNSFLOW, F3D, has a long track record of providing accurate CFD
computations. There are numerous reports that document CFD results obtained with this solver,
and some are listed in the reference section of this report. Some sample cases are provided to
users of ZNSFLOW when they obtain the code. These cases are simple, classic CFD
computations that demonstrate the accuracy of the code and show how to correctly apply the
ZNSFLOW solver. Each validation case is provided with experimental data for comparison.
Validation cases are completely documented within the yet-to-be formally published ZNSFLOW
user manual entitled, "Documentation and User's Guide for the ZNSFLOW Code".[15] A copy
of the ZNSFLOW user manual is provided when the ZNSFLOW software is obtained. The
ZNSFLOW user manual may also be downloaded from the ZNSFLOW CHSSI web site at
http://www.arl.hpc.mil/chssi/cfd6/.

ZNSFLOW software has also been reviewed by the DoD high performance computing
modernization office CFD computational technical area (CTA) lead, Jay Boris, during required
CHSSI software tests in May 1998. ZNSFLOW met or surpassed scalable speedup criteria for
available computers, and the validation cases provided documentation of the solver's
computational accuracy.

17

3. THE DISTRIBUTED INTERACTIVE COMPUTING ENVIRONMENT (DICE)

As stated earlier, ZNSFLOW is a suite of codes. Part of that suite is DICE.[16] DICE
provides a GUI that allows a user to create an input file for the ZNSFLOW solver. DICE can
also be used to execute the ZNSFLOW solver once the input file has been created. In addition,
once the solver is executing, DICE can provide real-time visualization of the flow field as it is
being computed. Even if the execution of the solver were initiated from a previous day, DICE
would allow the user to connect to the application on a remote computer and visually monitor its
progress on a local workstation. DICE provides a number of options for visualizing data. The
user can choose surface contours, iso-surfaces, x-y plots, or spreadsheets to display the data. At
present, only the shared memory solver has been integrated into DICE. However, DICE can still
be used to create the input file and perform visualization of solution files when it is used with the
distributed memory solver.

Figure 11 shows some of the GUI windows that a user may access. A flow field
visualization window is visible. The user may interactively rotate or translate the object in the
window to view the flow field from any position. Beneath the visualization window is the
boundary condition setup window. To the right of the boundary condition window is a data
directory window. This allows the user to drag and drop specific solver-generated data to DICE
utilities such as the iso-surface plotter. Farther to the right is the solver execution window. More
controls for executing the solver on multiple platforms are available. To the right of the
visualization window is the main interface from which all the other windows are initiated.

It is important to note that DICE is not only a GUI but an environment that includes a
heterogeneous distributed memory system called network distributed global memory (NDGM).[17]
NDGM uses a client-server approach that allows separate distributed applications to access a single
contiguous data buffer that may span the memory of several computers. This system forms the
bottom layer of the DICE data hub. The hierarchical data format (HDF) from the National Center
for Supercomputing Applications (NCSA) serves as a data organization layer above NDGM.
HDF4 has been modified to allow data sets to exist on disk, in NDGM, or in both. For example, a
static grid could be stored on disk for local access, while calculated scalars could be stored in an
NDGM buffer that is revised at every computational iteration. A convenient interface layer sits
above HDF and provides consistent access to both structured and unstructured data as well as
groups of data sets. This layer contains both tool command language (TCL) and C programming
language application programmers' interfaces (APIs). Together, these three layers comprise the
data hub in DICE and are known as the DICE data directory. Direct access to the DICE data
directory by a code is accomplished via the DICE application interface (DAI). Several heavily
used codes have been outfitted with DAI calls to allow run time visualization. The DICE data
directory has proved extremely useful as a common data rendezvous for codes executing on HPCs
and visualization.

18

Figure 11. DICE GUI Windows.

NDGM provides DICE with a physically distributed, logically shared, unstructured memory
buffer. Instead of handling the mapping and un-mapping of memory pages automatically,
NDGM is accessed through a subroutine interface. While less automatic, this allows applications
to form a "cooperative shared memory" that is simple yet efficient. NDGM is a client-server
system that consists of multiple server processes and an API for clients. Each server maintains a
section of a virtual contiguous buffer and field requests for data transfer and program
synchronization. Clients use the API to transfer data in and out of the virtual buffer and to
coordinate their activity. Calls to the API result in lower level messages being sent to the
appropriate NDGM server which keeps track of its piece of the total virtual buffer. The API
translates the global memory address into a local address that the server then transfers from its
local memory.

Client programs use the API to access the virtual NDGM buffer as contiguous bytes. No
structure is placed upon the NDGM buffer; the application can impose any structure on this
buffer that is convenient. In addition, NDGM is designed to implement a system of applications
in contrast to a single monolithic parallel application. The API includes facilities to get and put
contiguous memory areas, get and put vectors of data, acquire and release semaphores, and to
initialize and check into multiple barriers. For synchronization purposes, the API provides
barriers and semaphores. Checking into a barrier will result in the process blocking until the
barrier value reaches zero. Requesting a semaphore will block until the client who currently
owns the requested semaphore releases it.

19

The NDGM server process handles all requests for data transfer and synchronization. This
is a stand-alone program that waits for new connections from clients and services their requests.
Each server maintains a local memory buffer that maps into the virtual buffer address space.
This local buffer can be in one of three locations: local address space (obtained via the "malloc"
command), system shared memory, or a local file. If system shared memory is used, a client
executing on the same physical machine as the server accesses the shared memory instead of
making requests to a server. This access is transparent to the NDGM client application and
results in faster data transfers. Using a file as the server's local storage allows NDGM servers to
restart with their local memory already initialized.

Clients and servers run on top of a layered MPI. Similar in concept to well-known message-
passing interfaces such as PVM or MPI, this layer provides a level of abstraction, freeing the upper
layers from the details of reading and writing data. The NDGM message-passing layer has fewer
facilities than either PVM or MPI but is designed to pass NDGM data efficiently with minimal
copying. This layer provides calls to establish connections, send messages, probe for incoming
messages, read messages, and close connections.

The actual inter-process data transfer is accomplished by the drivers. Current drivers include
transport control protocol/internet protocol (TCP/IP) sockets, PVM, and first in-first out (FIFO).
Each driver has functions to open as a client or server, read, write, and probe for incoming
messages. When possible, each driver also implements a "select" function to monitor several open
connections. A single NDGM system can mix nodes that use different drivers.

NDGM has been used to develop parallel applications, but it is particularly useful as a "data
rendezvous" for a collection of applications. A parallel computationally intensive code can write
a snapshot of data to NDGM and then continue its processing. The data can then be visually
inspected through 2-D plots and 3-D surfaces, but they do not inhibit the progress of the code.
NDGM provides a distributed, heterogeneous unstructured buffer. To provide some structure to
this buffer, DICE uses HDF, a well-known and widely used format. HDF is designed to allow an
orderly access to structured and unstructured data sets. All access is accomplished through a well-
defined application programmer's interface. HDF is designed to access data via disk files. DICE
alters some of the low level access routines to allow HDF to access NDGM as well as disk files.

HDF defines a full-featured data format for structured and unstructured data sets as well as
groups of data. It does not place restrictions on the organization of these data sets. To simplify
access, DICE adds a convenience layer on top of HDF, which has been previously mentioned—the
DICE data directory (DDD). Modeled after the UNIX™ file system, DDD provides facilities for
mounting data sets and making subdirectories to help organize complex data. DDD provides for
structured data sets, unstructured data sets, and directories. In addition, DDD provides a
"reference" data set that points to a subsection of previously defined data. In this fashion, a single
data file can reside on disk, in memory, or in both and can contain many different types of data.

Through the use of NDGM, HDF, and DDD, the data organization of DICE provides a
level of abstraction for enormous distributed data sets. Computational code, visualization, and
user interface can all interact with the data in a well-defined method without severely limiting
performance. Since all the sections are modular, portions of the data abstraction can be

20

physically located to optimize the whole application's usability. DICE has proved to be an
exceptional computational environment for high performance computing software and is
currently used to support several codes developed under CHSSI in different CTAs.

4. ZNSFLOW DEMONSTRATION CASES

Demonstration cases were chosen to show the capabilities of the ZNSFLOW software.
Both of the demonstration problems require viscous Navier-Stokes CFD modeling for accurate
flow field solutions. Two demonstration cases were run on an SGI Origin 2000 computer. The
first of the two cases to be discussed is the guided multiple launch rocket system (MLRS)
missile. The guided MLRS computational model is built to answer questions about the use of
canards to perform controlled maneuvers for a missile with wraparound tail fins. A second
demonstration case shows the capability of ZNSFLOW to model complex multi-body systems.
Computational models were built for computing the flow field around 10 BAT sub-munitions
being ejected from an Army tactical missile (ATACM). The complexity and uniqueness of this
type of multi-body problem result from the aerodynamic interference of the individual
components, which include 3-D shock-shock interactions, shock-boundary layer interactions,
and highly viscous-dominated separated flow regions.

4.1 Computations for the Guided MLRS Missile

The computations will hopefully provide insight for engineers into the interaction of
canard-induced flow field disturbances with the down-stream wraparound tail fins. Providing
control for a missile with wraparound tail fins is more complex than with normal tail fins. The
curvature of the wraparound fins allows for easy storage because the fins fold against the missile
body while in the launch tube. Immediately after launch, the fins unfold to stabilize the missile.
The cylindrical shape of the wraparound fin is advantageous for packaging, but it can also
compromise the dynamic stability of the missile. Wraparound fins have a number of unique
aerodynamic traits, the most infamous of which is the roll moment that they generate; this may
change in sign and magnitude during the course of a trajectory. The roll moment contributes to
the missile spin rate. During the course of flight of a wraparound fin missile, it is possible for its
spin rate to increase or decrease more than once. In addition, the direction of spin may change.
This type of behavior can produce poor flight dynamics. CFD can be a useful tool for predicting
the aerodynamics of wraparound fin missiles.[18,19] The information gained from the
computations will hopefully aid in a successful design of the guided MLRS and future missiles
equipped with wraparound fins.

Initial computations have provided interesting information about the guided MLRS missile
flow field. Wind tunnel data for a similar geometry are available for comparison. The nose and
canard geometries of the computational model vary slightly from the wind tunnel model.
However, the results still provide insight and demonstrate the capability of ZNSFLOW for
providing flow field solutions for this configuration. The computations have been run at 0° angle
of attack at velocities of Mach 1.6 and Mach 2.2 and at 10° angle of attack at Mach 1.6. For all
computations, each canard has a deflection of 10°. A large computational model that exceeds

21

24 million grid points was made for flow field computations of the missile at angle of attack.
The computations demonstrated the ability of ZNSFLOW software to handle large data sets.
The computational models used for the 0° angle-of-attack case exploited symmetry and were
one-fourth the size of the computational model used for the angle-of-attack case.

Figure 12 shows a ZNSFLOW-computed solution of the guided MLRS missile at Mach 1.6
and 0° angle of attack. Figure 13 shows a ZNSFLOW-computed solution of the guided MLRS
missile at Mach 1.6 and 10° angle of attack. The flow field changes substantially with the
increased angle of attack. Figures 12a and 13a show pressure contours on a plane 1.4 calibers
from the nose. This plane is just aft of the canards. The location of the vortices generated by the
canard tips can be seen as small, circular low pressure regions near the canard tips. Figures 12b
and 13b are 3.7 calibers from the nose. The flow field at 0° angle of attack is symmetrical, but
the flow field for the 10° angle of attack is asymmetrical. Most noticeable is a large low-pressure
region on the visible side of the body. Since the missile is flying at angle of attack, the deflected
canard beneath the body directs more air to the visible side of the body. This low pressure region
extends to the rear of the missile and is visible in Figure 13c, which is approximately 14 calibers
from the nose and is just in front of the tail fins. Figure 12c is at the same location as Figure 13c.
Figure 12c again shows the symmetrical flow field at 0° angle of attack in contrast to the
asymmetrical flow field generated at 10° angle of attack shown in Figure 13c. In Figure 12c,
the light contour shade between the dark contours near the body indicates the locations of the tail
fins. The dark pressure contours in Figure 12c indicate that the position of the canard tip vortices
is actually between the wraparound tail fins.

12a. Normalized pressure contours 12b. Normalized pressure contours 12c. Normalized pressure contours
1.4 calibers from nose tip. 3.7 calibers from nose tip. 14.4 calibers from nose tip.

Figure 12. Normalized Pressure Contours at Mach 1.6 and 0° Angle of Attack.

Visualization using particle traces has also provided some insight to the guided MLRS flow
field. Figure 14 shows particle traces released from the wakes of the deflected canards. The
particle traces for Figure 13a were generated from a Mach 1.6 flow field solution, while the particle
traces for Figure 14b were generated from a Mach 2.2 solution. Figures 14a and 14b indicate that
the flow fields are similar at Mach 1.6 and Mach 2.2 at 0° angle of attack. An interesting note is
that particles released at the base of the canards nearly hit the base of the tail fins. However,
particles released at the canard tips are caught in a vortex that passes between the fins. The particle

22

traces in Figure 14c are an indication of the differences in the flow field for a guided MLRS missile
at 0° and 10° angle of attack. The particle traces for Figure 14c were generated from a Mach 1.6
flow field solution at 10° angle of attack. The traces show that particles released from the canard
wakes are swept to the lee side or upper side of the missile body. As mentioned earlier, the canard
beneath the missile deflects more air flow to one side of the body, creating a large difference in the
flow fields on the sides of the body. For the 10° angle-of-attack case, only the canard tip on the far
side of the body generates a strong vortex. An indication of this vortex is the small dark circle on
the left side of the body, which is visible in Figure 13b.

13a. Normalized pressure contours 13b. Normalized pressure contours 13c. Normalized pressure contours
1.4 calibers from nose tip. 3.7 calibers from nose tip. 14.4 calibers from nose tip.

Figure 13. Normalized Pressure Contours at Mach 1.6 and 10° Angle of Attack.

The ATACM-BAT multi-body problem involves the radial dispensing of several BAT sub-
munitions (see Figure 15) at a low supersonic speed. This case is ideally suited for the Chimera
over-set grid technique described earlier. The Chimera scheme allows each BAT to be modeled
with its own simple orthogonal grid as seen in Figure 16. The trajectory of the 3-D radial
dispensing sub-munitions depends on the initial ejection velocity. The flow field is complex and
involves 3-D shock-boundary layer interactions and ATACM-to-BAT as well as BAT-to-BAT
interactions. Detailed experimental or theoretical data were not available to help evaluate the sub-
munition dispensing phenomenon for the entire BAT system, and thus the numerical solution of
this problem was initiated. [20-22] The Chimera solution procedure was successfully used to help
determine the aerodynamic interference effects. [21]

For a set of wind tunnel experiments, the position of the sub-munitions was set in order to
evaluate flow field correction factors for nonsymmetrical dispensation at a distance near and far
from the bay. The flow field correction factors are used in six-degree-of-freedom simulations of
BAT dispensation for differing conditions. CFD computations were made for two configurations:
Configuration A, which places the sub-munitions relatively close to the missile bay, and
Configuration B, which places them farther away from the turbulence generated by the missile
bay. For both Configurations A and B, there is equi-distant circumferential spacing for each sub-
munition except one, which has a 5° offset. The sub-munition with the circumferential offset is

23

located at approximately the 11 o'clock position. Figure 17 provides a visual reference for the
sub-munition positions for Configurations A and B.

Figure 14a. Particle traces for Mach 1.6,0° angle of attack.

Figure 14b. Particle traces for Mach 2.2,0° angle of attack.

Figure 14c. Particle traces for Mach 1.6, 10° angle of attack.

Figure 14. Particle Traces at Various Mach Numbers and Angles of Attack.

4.2 Computations for BAT Sub-Munitions Ejecting From AT ACM

Surface pressure contours are shown for Configuration A in Figure 18 and for Configuration
B in Figure 19. The surface pressures on the Configuration A sub-munitions reveal much stronger
pressure gradients than the sub-munitions in Configuration B. Also, surface pressure contours
within the AT ACM missile bay are somewhat different between Configurations A and B. The
stronger pressure gradients on the Configuration A sub-munitions, which are much closer to the

24

AT ACM missile bay, are indicative of the higher pitching moments generated, which tend to push
the nose of the BAT sub-munitions radially inward toward the AT ACM missile bay. Since the
computations include multiple BAT sub-munitions, BAT-to-BAT interactions are included.
These interactions are critical and have a strong effect on the aerodynamic forces and moments.
The normal force and pitching moment coefficients vary between the sub-munitions, indicating
the asymmetrical nature of the interacting flow field.

Figure 15. Diagram of the Multi-body System. Figure 16. Grids for the BAT Sub-Munition Dispensing
from ATACM.

Some experimental data [23] were available for comparison with the computational results
of Configuration A. Figure 20 provides a visual reference for location of the B ATs that were the
source of the experimental data. A BAT at approximately the 5 o'clock position was equipped to
record pressure data. Pressure data were collected on the side of the BAT closest to the ATACM
and on the side facing away from the ATACM. On either side of the BAT, pressure data were
taken at five positions. Unfortunately, the pressure data obtained from the experiment on the side
of the BAT facing the ATACM do not appear to be accurate. However, the pressure coefficient
data computed from the CFD solution on the side of the BAT facing the ATACM are plotted in
Figure 21. Figure 22 shows a comparison between the pressure coefficient obtained from
experimental and CFD-calculated data on the side of the BAT facing away from the ATACM.
Both Figures 21 and 22 show the pressure coefficient as a function of the length of the BAT body
in which X/L = 0 corresponds to the BAT nose and X/L = 1 corresponds to the end of the BAT
body. Figure 22 shows that the pressure coefficient computed from the CFD solution is in very
good agreement with experimental data. The CFD-computed data plotted in Figures 21 and 22
provide an interesting comparison that demonstrates the asymmetry of the flow field about the
BAT and the strong influence of the ATACM proximity to the BAT. Although the comparison
between the experimentally obtained and CFD-computed pressure coefficient is quite good, the
comparisons between experimentally obtained and CFD-computed force and moments indicate
that some flow field characteristics may not be captured accurately by the CFD solution.

25

Figure 17. Configuration A and B Sub-Munition
Location.

M. t

E
0.25 1.00 1.75 ZiO

Figure 18. Normalized Surface Pressure
Contours for Configuration A.

K

":5Bp^|r-
-_.^;'

■^ "M^T- ■

0.25 1.00 1.79 2J0

Figure 19. Normalized Surface Pressure
Contours for Configuration B.

Configuration A

BAT located '7.60 'si
from ATACM center ^s\

Inner BAT surface where
y**—«s. pressure coefficient data

where force and moment / -fife l were collected.
cuto were collected. ^^ KM/ # /

|P%
ATACM * ^W 7

:i»v '
yJ \

BAT located 14.85 fsi from Outer BAT surface where
ATACM center where force and pressure coefficient data
moment uatu were collected. were collected.

Figure 20. Locations Where Experimental
Data Were Collected.

c 2.00 -1
a
Ö 1.50 -

1 1.00 -
O 0.50 -

% 0.00 -

" -0.50 -
9
a-1.00 -

C

I——Computation I

I ^ - ^^

0.25 0.5 0.75

X/L

1

c 2.00 -,
s
o 1.50 -

« 1.00-

O 0.50 -

| Computation 0 Experiment |

| 0.00 -

Jo -0.50 ■

a -1.00 -

C 1 0.25 0.5

X/L

0.75 1

Figure 21. Pressure Coefficient Versus BAT Length Figure 22. Pressure Coefficient Versus BAT Length for
for BAT Surface Facing ATACM. BAT Surface Facing Away From ATACM. r231

26

Force and moment data were collected from the BATs located at the 12 o'clock and 6 o'clock
positions. The BAT at the 12 o'clock position has a radial distance from the ATACM center of
17.60 full scale inches (fsi). The BAT at the 6 o'clock position has a radial distance from the
ATACM center of 14.85 fsi. Figure 23 shows both the experimental data and the data computed
from the CFD flow field solution. The data in Figure 23 indicate that the CFD-computed data
match the experimental data of the BAT 17.60 fsi from the ATACM center more closely than the
experimental and computed data of the BAT 14.85 fsi from the ATACM center. The data for the
normal force (CN) are in good agreement for the BAT 17.60 fsi from the ATACM center. The
side force (CY) data appear to be the same for the CFD-computed side force and the experimental
side force. This is somewhat misleading because the magnitude of the side force is much smaller
than the normal force and pitching moment, Cmz (coefficient of moment about the Z axis). The
relatively small side force is a good indication that the BATs are not likely to move closer together
when being ejected from the ATACM bay at 0° angle of attack. The difference between the
pitching moment for experimental data and CFD-computed data is less for the BAT farthest from
the ATACM. This seems to indicate increased difficulty in computing the flow field for the
ATACM-BAT multi-body problem accurately when the BATs are almost in the ATACM bay.

The drag coefficient computed from the CFD solutions compares very well with the
measured drag coefficient. Figure 24 shows a plot for the drag coefficient of the same BATs that
were instrumented to obtain the force and moment data displayed in Figure 23. In the
experiment, each BAT was mounted on a "sting." The stings were not modeled in the CFD
computation. The total drag coefficient was obtained from a force measurement of the BAT with
sting. The experimental value of the BAT forebody drag was estimated by taking a pressure
measurement near the BAT base and using it to estimate the base drag component of the total
drag coefficient. The base drag component was then subtracted from the total drag to obtain the
forebody drag. An interesting note is the increase in drag with the increased distance of the BAT
from the ATACM center.

la 0 c

1 1

0.5 •

0-

•
0
▲

•
A

• CN: Experiment

OCN: Computation
£ £ ACY: Experiment
C E -0.5 ■

e ACY: Computation
s 0
U Ü

-1 - ■ ■ Cmz: Experiment
o
u.

-1.5 ■

-2 ■
1

D DCmz: Computation

3 15 17 19

Radius (fsi)

1.2 i

S 1 • O

• Total Drag:
Experiment

ü 0.8.
E
S 0.6.
U
a 0.4.
(B

• *

1 "

OTotal Drag:
Computation

■ Forebody Drag:
Experiment

□ 0.2 ■

0 -

1

D Forebody Drag:
Computation

3 15 17 19

Radius (fsi)

Figure 23. Force and Moment Coefficients for
Configuration A.[23]

Figure 24. Drag Coefficients for Configuration A. [231

27

5. ZNSFLOW USER CASES

It is also important to demonstrate that other organizations are capable of using the
ZNSFLOW software. Examples of cases chosen by potential ZNSFLOW users for code
demonstration are shown in this section. The two demonstration cases depicted are the theater
high altitude area defense (THAAD) missile and Sea Sparrow missile. They are shown in
Figures 25 and 26, respectively. The THAAD computational model was supplied by Rex
Chamberlain of Tetra Research in Huntsville, Alabama. [24] Bob Burman of the Naval Air
Warfare Center in China Lake, California, provided the Sea Sparrow computational model.[25]
Solutions were obtained for both cases on a multi-processor SGI Onyx computer. The
computational model for the THAAD missile was a three-zone, one-to-one grid point overlap
computational mesh, and the Sea Sparrow computational model employed the Chimera scheme
to provide communication among its five zones. Both computational models used pitch-plane
symmetry. The THAAD missile computational model was built using 1,883,805 grid points,
while the Sea Sparrow missile used 2,233,500 points. Each case could be ran in parallel under
DICE and could be visualized interactively on the Onyx computer.

Figure 25. Mach Contours of THAAD Missile Figure 26. Surface Pressure Contours on Sea Sparrow
Flow Field at 10° Angle of Attack Missile.

6. CONCLUDING REMARKS

A broad overview of the software developed under the CHSSICFD-6 project has been
presented. The scalable Navier-Stokes solver executed through the interactive computing
environment, DICE, provides engineers with a fast and comprehensive CFD computation and
analysis tool for complex configurations that require large computational resources. However,
the solver can perform computations for simple cases just as well. The software allows the user
to perform, monitor, and visualize the computations on large HPCs without copying the
computational mesh and solution to their local workstation. The comprehensive interface
provides control for every aspect of the computation. It was also demonstrated that the
ZNSFLOW software provides accurate and visually informative results for large complex

28

configurations such as the guided MLRS missile and BAT dispersal from AT ACM. The
predictive numerical capability documented allows for accurate computation of flow fields that
capture complex aerodynamic phenomena, such as interference effects, required for the improved
design and modification of current and future DoD projects.

29

INTENTIONALLY LEFT BLANK

30

REFERENCES

I. Pulliam, T.H., and J.L. Steger, "On Implicit Finite-Difference Simulations of Three-
Dimensional Flow," AIAA Journal Vol. 18, No. 2, pp. 159-167, February 1982.

2. Steger, J.L., S.X. Ying, and L.B. Schiff, "A Partially Flux-Split Algorithm for Numerical
Simulation of Compressible Inviscid and Viscous Flows," Proceedings of the Workshop on
CJFD, Institute of Nonlinear Sciences, University of California, Davis, CA, 1986.

3. Steger, J.L., F.C. Dougherty, and J.A. Benek, "A Chimera Grid Scheme," Advances in Grid
Generation, edited by K. N. Ghia and U. Ghia, ASME FED-5, June 1983.

4. Benek, J.A., T.L. Donegan, and N.E. Suhs, "Extended Chimera Grid Embedding Scheme
With Application to Viscous Flows," AIAA Paper No. 87-1126-CP, 1987.

5. Meakin, R.L., "Computations of the Unsteady Flow About a Generic Wing/Pylon/Finned-
Store Configuration," AIAA 92-4568-CP, August 1992.

6. Goldberg, U.C., O. Peroomian, S. Chakravarthy, "A Wall-Distance-Free k-e Model With
Enhanced Near-Wall Treatment," ASME Journal of Fluids Engineering, Vol. 120, pp. 457-
462, 1998.

7. Baldwin, B.L., H. Lomax, "Thin Layer Approximation and Algebraic model for Separated
Turbulent Flows," AIAA 78-257, January 1978.

8. Ferry, E.N., J. Sahu, and K.R. Heavey, "Navier-Stokes Computations of Sabot Discard using
Chimera Scheme," Proceedings of the 16th International Symposium on Ballistics, September 1996.

9. Sahu, J., K.R. Heavey, and E.N. Ferry, "Computational Fluid Dynamics for Multiple
Projectile Configurations," Proceedings of the 3rd Overset Composite Grid and Solution
Technology Symposium, Los Alamos, NM, October 1996.

10. Sahu, J., K.R. Heavey, and C.J. Nietubicz, "Time-Dependent Navier-Stokes Computations
for Sub-munitions in Relative Motion," Proceedings of the 6th International Symposium on
Computational Fluid Dynamics, Lake Tahoe, NV, September 1995.

II. Almasi, G.S. and A. Gotlieb, "Highly Parallel Computing," Second Edition, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

12. Pressel, D. M., "Results from the Porting of the Computational Fluid Dynamics Code F3D to
the Convex Exemplar (SPP-1000 and SPP-1600)," ARL-TR-1923, U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, March 1999.

13. Birch, T., private communication, DERA, Bedford, UK, 1995.

14. Sturek, W., T. Birch, M. Lauzon, C. Housh, J. Manter, E. Josyula, and B. Soni, "The
Application of CFD to the Prediction of Missile Body Vortices," AIAA 97-0637, January 1997.

31

15. Weinacht, P., "Documentation and User's Guide for the ZNSFLOW Code," to be published
but available upon request.

16. Clarke, J., C.E. Schmitt, JJ. Hare, "Developing a Full Featured Application from an Existing
Code Using the Distributed Interactive Computing Environment," Proceedings of 1998 DoD
HPC User's Group Conference, June 1998.

17. Clarke, J., "Network Distributed Global Memory for Transparent Message Passing on
Distributed Networks," ARL-CR-173, U.S. Army Research Laboratory, Aberdeen Proving
Ground, MD, 1994.

18. Edge, H., "Computation of the Roll Moment Coefficient for a Projectile With Wraparound
Fins," ARL-TR-23, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1992.

19. Patel, N., H. Edge, J. Clarke, "Three-Dimensional (3-D) large Fluid Flow Computations for
U.S. Army Applications on KSR-1, CM-200, CM-5, and Cray C-90," ARL-TR-712, U.S.
Army Research Laboratory, Aberdeen Proving Ground, MD, 1995.

20. Wooden, P. A., W. B. Brooks, J. Sahu, "Calibrating CFD Predictions For Use In Multiple
Store Separation Analysis," AIAA Paper No. 98-0754, January 1998.

21. Sahu, J., H.L. Edge, K.R. Heavey, E. Ferry, "Computational Fluid Dynamics Modeling of
Multibody Missile Aerodynamic Interference," Proceedings of the NATO RTO AVT
Symposium on Missile Aerodynamics, Sorrento Italy, May 1998.

22. Wooden, P.A., E.R. McQuillen, W. B. Brooks, "Evaluation of a Simplified Multiple Store
Interference Model," AIAA Paper No. 98-2800, June 1998.

23. Lee, P.J., "Analysis Report of Army TACMS Block H Captive Airloads Wind Tunnel Data
from HSWT Test 1218," 3-18400/6R-050, Lockheed Martin Vought Systems, Dallas, TX,
November 1996.

24. Chamberlain, R., Private communication, U.S. Army Research Laboratory, MD, 1999.

25. Burman, B., Private communication, U.S. Army Research Laboratory, MD, 1999.

26. Goldberg, U., and D. Apsley, "A Wall-Distance-Free Low Re k -£ Turbulence Model,"
Computer Method and Applied Mechanical Engineering, pp. 145-227, 1997.

27. Bailey, David H., "RISC Microprocessors and Scientific Computing," Proceedings for
SUPERCOMPUTING 93, Association for Computing Machinery, Portland, Oregon, 1993.

28. Speech of Dr. J. Boris at the DOD HPC MOD program Annual Users Group Meeting held at
NRL in 1996 summarizing the state of the art.

32

APPENDIX A

TURBULENCE MODELS USED IN ZNSFLOW

33

INTENTIONALLY LEFT BLANK

34

TURBULENCE MODELS USED IN ZNSFLOW

ZNSFLOW has three options for modeling turbulence: the Baldwin-Lomax model, the one-
equation point-wise turbulence model, and two-equation point-wise turbulence model. Following
is a brief description of the models' formulation.

1. BALDWIN-LOMAX MODEL

This is an algebraic, two-layer model with the attractive feature of removing the necessity
of determining the displacement thickness or the wake thickness and instead uses the distribution
of vorticity to determine the length scales in the outer model.

The model is subdivided into an inner and an outer model. The inner model is applied
between the body surface and a cross-over point where the inner viscosity exceeds the viscosity
evaluated using the outer model. The outer model is applied outward from the cross-over point.
The inner model employs the Van-Driest mixing length approach and uses the following:

(uT) - p I21 co I (1) Vr*T / inner r \ | v '

in which
/ = £y[l-exp(-y+/A+)] (2)

Here, y is the coordinate normal to the surface and | co I is the magnitude of the local vorticity. The
constants, k and A+, have the values 0.4 and 26.0, respectively. The nondimensional boundary layer
coordinate, y+, is a function of the fluid viscosity vw, fluid density pw, shear stress TW, and the
dimensional distance from the wall, y. The subscript w indicates that the quantities are to be
evaluated at the body surface. For wake flows, the exponential term shown above is set to zero.

/ = ÜÜ1 (3)

In the outer region, the model takes the form

(MT) outer- PKCcpFWakeFKLEB(y)

in which FKLEB (y) is the Klebanoff intermittency factor which can be written as

' KLEB W _

and K = 0.0168, Ccp = 1.6, CKLEB = 0.3.

/max

(5)

35

The parameter FWAKE is evaluated as

FWA„ = smaller of [(ymaxFmax)...or...{CWKyimxu
2

DIF /F^)\ (6)
WAKE

in which uDIF is the total velocity difference across the boundary layer or wake and CWK was

originally assigned a value of 0.25 by Baldwin and Lomax, although more recently, a value of 1.0
has been used. F^ is determined from the maximum value of the function F(y), evaluated from

F(y)=v|ö)|[l-exp(-y+/A+)]. (7)

While y^ is the value of y whereby F{y) equals F^ . For wake flows and separated

boundary layers, attention needs to be paid to the appropriate normal direction. In attached
boundary layer calculations, FWAKE = ynaxFmax is used.

2. POINT-WISE TURBULENCE MODEL

To overcome the ambiguity of the wall distance in turbulence formulations, Goldberg et al. [26]
proposed the use of wall proximity indicators that are local, i.e., point-wise in nature and that indicate
the influence of the walls indirectly through parameters. These wall-distance-free models are
tensorially invariant and frame indifferent, making them applicable to arbitrary topologies and moving
boundaries. They have been shown to be independent of structured and unstructured meshes and
computer architecture, including massively parallel machines.

The following is based on and summarizes Goldberg's "Summary of Linear Topology-Free
One- and Two-Equation Turbulence Models."

2.1 Formulation of Wall-Distance-Free Turbulence Models

2.1.1 One-Equation Model

The one-equation model consists of solving the transport equation for the undamped eddy
viscosity (R):

DR a
p = —

Dt dx,

f fi,)dR
jU + —

dx,
+ ClP(RPk)

in-(C3f3-C2)pD (8)

in which Pk is the turbulence production expressed in terms of the Boussinesq model and D is

the destruction term. The eddy viscosity field is given by

P,=fMpR W

36

in which

/,=
tanhjax)

tanh(j6fr2)

The damping function

pR

/3=1 +
2a

3ßC3X

(10)

(11)

(12)

is derived from asymptotic arguments, and the value of C3 = 1.146, with the value of ß =0.2,

and a =0.07. Equation (8) is subject to the boundary condition that on solid walls R = 0, while
free stream inflow and initial conditions demand /? < v^.

2.1.2 Two-Equation Model

The Reynolds stresses are related to the mean strain gradients through the Boussinesq
model, and the eddy viscosity contains a damping function. For details of the derivation, the
reader is referred to in reference [6]. The turbulence kinetic energy and the dissipation rate, k and
e , are determined by the transport equations

dt dxj J dXj
n+ V>, dk

dX:
+ Pk-pe (13)

d(ps) d ,TT . d H • + — (Ujp£)- —
dt dx. BX:

iß + —)-
(7, dx,

+ iCBXPk-Ce2p£ + E)Tr
-i

in which Pk is the turbulence production modeled following the Boussinesq concept. The

realizable time scale is

r,=-max{l,-^=}

(14)

(15)

The model includes an extra source term, E, that is designed to increase the level of e in non-
equilibrium flow regions. This reduces the length scale and improves the prediction of adverse
pressure gradient flows.

in which

and

E = AEpv^£Tr
x¥

dk 3T m xF = max{ ,0}
dXj dXj

(16)

(17)

37

v=max{*1/2,(v£)I/4} (18)

The model constants are Cr = V2 and AE = 0.3. The boundary conditions are as follow: at walls,
the kinetic energy of turbulence and its first normal-to-wall derivative vanish. The boundary
condition for e is based on its near-wall asymptotic behavior, i.e.,

ew=2v1\ (19)

in which "1" denotes the first internal node. This boundary condition implies that (dk/dy)w = 0,
thus satisfying the second boundary condition for k implicitly.

38

APPENDIX B

COMPUTER SCIENCE ISSUES BEHIND THE
SUCCESS OF CHSSI PROJECT CFD-6

39

INTENTIONALLY LEFT BLANK

40

COMPUTER SCIENCE ISSUES BEHIND THE SUCCESS OF CHSSI PROJECT CFD-6

1. INTRODUCTION

When the CHSSI PROJECT CFD-6 was first conceived, two important software issues and
one important hardware issue had yet to be resolved, which would have a strong bearing on the
success or failure of this project:

a. What (if any) benefit do large memory high performance computing jobs receive from
the benefit of a memory hierarchy involving one or more levels of cache memory?

b. Can implicit CFD codes be successfully parallelized without damaging their convergence
properties and/or requiring significant modifications of the algorithm?

c. Assuming that large memory high performance computing jobs do benefit from the
presence of cache memory, which is better: large caches or faster access to the main memory?

2. MEMORY SYSTEM ISSUES AND SERIAL EFFICIENCY

According to David Bailey (formerly at NASA Ames Research Center), his experiments on
Intel i860 processors showed that caches were of limited or no value to large memory high
performance computing jobs. [27] Based on this work and those of several other major researchers
in the fields of computer architecture and/or the computational sciences, the benefit of cache
memory was highly dubious. This was a disturbing conclusion since this project was expecting to
use scalable parallel processors based on RISC processors and dynamic random access memory
(DRAM). The problem with this is that the speed of the processors was increasing rapidly, while
the bandwidth to memory was increasing slowly, and the memory latency was barely changing at
all. Therefore, unless cache memory could be shown to be of value, it was expected that it would
be only a matter of time before continued improvements in the peak speeds of the processors
would become irrelevant.

Early experiments in running code (not optimized for the SGI RISC processors) were not
very encouraging. These experiments were run using a single processor of a 75-MHz (300
Mflops4 peak speed) R8000-based SGI Power Challenge. Compared to the performance of
running an in core version of the F3D code on one processor of a Cray C-90, it was hoped that
the code running on the Power Challenge would decelerate by roughly a factor of 3. In fact, a
deceleration of roughly a factor of 45 was observed. Further experiments based solely on the use
of compiler options (run by Daniel Pressel) proved to be of limited benefit. Clearly at this time,
things were not looking good for architectures based on DRAM main memory and one or more
levels of cache.

4One million floating point operations per second

41

At that time, efforts had been aimed at minimizing the changes in the code in the hopes of
having a single program that would perform well on both vector processors and scalable parallel
processors. This approach was abandoned, and traditional tools (e.g., profiling) were applied to
the problem. The concept here was that vectorizable code was designed to run on vector
processors (Cray vector processors, to be specific). As a result, the code was written in a manner
that would keep the vector processor busy. At the same time, issues such as locality of reference
or required memory bandwidth were of little concern since these machines made few
assumptions concerning locality of reference, supported very high levels of memory bandwidth,
and vector processing was inherently tolerant of moderate levels of memory latency.

Using these tools, it was easy to see where the hot spots were in the program. Further
analysis produced the following conclusions:

a. Many of the loops in the program were accessing the large arrays with a large stride.
Frequently, this resulted in a high cache miss rate. In all cases, it resulted in a high TLB miss
rate, which was just as bad (TLB is the part of the memory system that maps addresses from the
logical address space of a program to the physical address space of main memory). This problem
was addressed through a combination of four main techniques:

(1) Reordering the indices of the arrays;

(2) Reordering the loops in the loop nest;

(3) The judicious use of matrix transpose operations (for invariant/relatively invariant
arrays, the matrix transpositions should be kept in memory in between uses and revised only
when they need to be); and

(4) Blocking.

b. Some cases of copying between large arrays were relics of the code since it was written
as an out-of-core solver. In general, it was possible to eliminate this copying. While originally
this was not productive, had this not been done, it could have easily represented half of the
remaining run time when the other optimizations were performed.

c. Some of the loops were using scratch arrays to pass data from one loop to the next. The
main justification for not merging the loops was that the merged loop was too complicated for
the vectorizing compiler to automatically vectorize. Since this was no longer a concern, the need
to use these arrays represented a performance problem; the loops were merged, and the scratch
arrays were eliminated.

d. When cache-based architectures are used, it is highly desirable to perform as many
calculations on a set of values as possible, before moving to the next set of values. This is in
sharp contrast to vector codes wherein one wants to maximize the number of times the same
operation/set of operations can be performed on independent sets of values. As a result, vector-
oriented code will inherently require a much higher memory bandwidth to obtain the same level
of performance. Two related examples of how this information can be used are

42

(1) If one has a loop nest such as:

DO ...M=l,5
DO ... N=l,5
DO...L=l,LMAX
DO... K=1,KMAX
Several lines of code involving arrays such as A(K,L,N,M).

It will probably produce far fewer cache and TLB misses if the loop nest can be
rewritten as

DO... L=1,LMAX
DO ... K=1,KMAX
DO...M=l,5
DO...N=l,5
Several lines of code that now involve arrays such as A(N,M,K,L).

This will also have the added benefit of potentially supporting more aggressive forms
of loop unrolling.

(2) If one has a long complicated loop that employs all the values associated with a
single data point, then it is more efficient to store those values in an array Q(N,J,K,L) than in an
array Q(J,K,L,N) in which N is some small integer value such as 5 or 6. Similarly, if one has two
or more arrays that are always used as a group, then those arrays should be merged. An example
of this is merging the arrays XX(J,K,L), XY(J,K,L), and XZ(J,K,L) into a single array
XXYZ(3,J,K,L).

e. When vector-based architectures are used, it is sometimes necessary to process a plane of
data at a time in order to avoid limitations caused by dependencies. This can result in the use of
scratch arrays that are too big to fit in cache. However, if one accepts that the code no longer needs
to be vectorizable, then one can process just a single row or column of data at a time. This will
normally shrink the size of the scratch arrays by one or more orders of magnitude. At this point,
the array has the advantage of being "locked" into cache. The one catch is that the cache still needs
to be big enough. Many processors have relatively small primary caches ranging in size from 8 KB
to 64 KB. In some cases, the scratch arrays might not fit into the primary cache, or at best would
be a tight fit, which would result in an undesirable level of cache thrashing. However, if the
processor has a large off-chip cache (e.g., at least 1 MB in size), then it is possible to "lock" the
scratch arrays into cache with plenty of room to spare. Note that this observation can also be
important when blocking code, since very small block sizes may be of little or no value.

f. It was also found that a small number of the loops were expensive and computationally
intensive but had a low cache miss rate. For these loops, highly aggressive techniques were used
to improve the level of register reuse and to take better advantage, in other ways, of the pipelined
nature of RISC processors.

43

g. Three final observations about this process were

(1) Tuning is an iterative process.

(2) For programs that are not written in an object-oriented fashion (e.g., Java or
C++), relatively few subroutines or functions will need to be tuned. However, if the tuning
process is successful, the number of routines requiring tuning will increase (e.g., by a factor of 2
or 3, or from 5-10 to 20-30 routines) as the process finishes.

(3) The 80-20 rule (20% of the work gets 80% of the benefit) does not apply. Many
of these systems have very significant increases in performance as one passes the 90% to 95%
tuned point. The reason for this has to do with the high cost of cache and TLB misses (100 or
more cycles). The point here is that until one has reduced the cache miss rate (in terms of the
misses that miss all the way back to main memory) to 1% or less, most other forms of tuning will
not provide a significant gain in performance. However, if the overall cache miss rate is tuned to
this extent, then other forms of tuning may be worth considering (at least for the two or three
most expensive routines).

The net result of these manipulations was to accelerate the code by a factor of 11 while
leaving the algorithm and the convergence properties unchanged. It is also important to note that
all of this was done before attempting to parallelize the code, so this acceleration was not achieved
by using substantially more hardware. Additionally, since independent measurements on the Cray
C-90 showed that the original vector-optimized code achieved 30% to 40% of peak, these
improvements in performance were not the result of starting from a poorly written/optimized code.

At this point, we have answered the first concern. It is actually possible for a large memory
high performance computing job (we have run jobs as large as 73 GB) to benefit from a cache,
providing that the cache is at least 1 MB in size (2- to 8-MB caches may be even better). The third
concern had to do with trade-offs between fast memory access and the presence of cache. The ratio
between memory latencies of the fastest versus the slowest systems in this market is roughly 2:3.
Similarly, the ratio for memory bandwidths is roughly 2:4. Clearly, for well-tuned code, the large
cache can be advantageous and is a better choice than to worry about minor improvements in
memory latency and memory bandwidth. However, for untuned code, the reverse statement can be
made. The problem is that even on the systems with the fastest DRAM-based memory systems,
the performance of untuned/poorly tuned code is likely to leave a lot to be desired.

3. PARALLELIZATION ISSUES

When this project was started, it was "common knowledge" that implicit CFD codes (e.g.,
F3D) could not be efficiently parallelized without adversely affecting the convergence properties
of the algorithm.[28] To one of the authors (Daniel Pressel), this seemed like a rather strange
statement. It was known that F3D performed efficiently on a Cray C-90, a vector processor.
Since vectorization is a form of parallelism, it should theoretically be possible to exploit the same
parallelism with non-vector processors in order to demonstrate parallel performance. Upon
further reflection, there were three straightforward reasons for the "common knowledge":

44

a. Commonly used approaches to parallelization assumed that one had a virtually infinite
level of available parallelism. This assumption was necessary because of the limited performance
of the individual processors being used. In contrast, Cray vector processors were reasonably
efficient even when the levels of available parallelism were in the range of 50 to 100.

b. Ordinary techniques for parallelizing CFD codes were based on the concept of domain
decomposition. This had the benefit of generating a good level of locality of reference, which
helped to reduce the amount of data motion between processors in a distributed memory
environment (such as is normally used in highly scalable parallel processors). Unfortunately,
when this approach to implicit CFD codes was applied in a naive manner, the convergence
properties of the code were frequently adversely affected when as few as 32 processors were used.

c. The obvious alternative was to use some form of loop-level parallelism. What made this
obvious is that vectorization is a form of loop-level parallelism. Unfortunately, when attempting
to implement loop-level parallelism in a distributed memory environment, one is likely to have a
very poor locality of reference. Furthermore, the messages between the processors are likely to
be small in size, but huge in number. This will make the program perform poorly on most of the
massively parallel systems on the market. The two solutions are

(1) Use a shared memory system, which would eliminate the performance problems
associated with using a distributed memory system.

(2) Use a distributed memory system that supports a particularly efficient version of
Software Virtual Shared Memory. The Cray T3D was designed to be just such a system.

One might question why the first of these approaches had not been tried before. The
answer is quite simple. Before this project began, there were three types of shared memory
systems on the market:

a. Systems based on two to eight mini-computer/main frame processors that were poorly
suited for the task (e.g., too weak and/or too expensive for the delivered level of performance).

b. Vector-based systems using 2 to 16 processors. The biggest problem here was that the
vector processors were already using much of the available parallelism, leaving little hope of
showing significant levels of speedup.

c. Shared memory systems based on micro-processors using as many as 30 processors.
Unfortunately, the performance of these processors was limited, resulting in systems that were
once again poorly suited for the task.

Starting in the early 1990s, all this started to change. SGI announced the R8000 processor
would have a peak speed of 300 Mflops. The Digital Equipment Corporation (DEC) produced
the 21064 Alpha processor with a peak speed of 150 Mflops; IBM announced the POWER2
processor with a peak speed of 267 Mflops; and HP produced a processor rated at 200 Mflops.
SGI, DEC, and Convex (using HP's processor) all produced shared memory systems of various

45

sizes based on these powerful processors. Additionally, Cray Research produced the Cray T3D
based on the Alpha processor, which was designed to support the CRAFT programming model (a
form of Software Virtual Shared Memory). In theory, the SGI and Convex systems should have
been equivalent in performance to a small Cray C-90, while Cray claimed that a large T3D was
more powerful than a 16-processor Cray C-90 (at least for some problems).

With the arrival of eight SGI Power Challenges (collectively referred to as the Power
Challenge Array) at the U.S. Army Research Laboratory (ARL), and with the Army High
Performance Computing Research Center gaining access to a large Cray T3D, the scene was set
to see what these machines were capable of doing. Daniel Pressel was selected to optimize the
F3D code for the Power Challenge, while Marek Behr was selected to do the same for the Cray
T3D. As mentioned earlier, the only startling thing about the performance of this code on the
Power Challenge was the poor level of the performance. Furthermore, these machines arrived
with 12 processors each, were upgradable to a maximum of 18, and did not support the shared
memory-programming paradigm when used as a cluster. Therefore, it would be impossible to
overcome this performance deficit by using large numbers of processors.

Marek Behr's problems with the Cray T3D were even more serious. Whereas the Power
Challenge was able to run the code using a single processor from the first (albeit very slowly),
that option did not even exist for the Cray T3D. Therefore, it was impossible for him to even
consider the issues surrounding serial efficiency until after he had successfully parallelized the
code. Furthermore, once he had succeeded in parallelizing the code using the CRAFT model, the
performance shortcomings of this model became all too apparent. By this time, much of the
serial tuning for the Power Challenge had been completed and the use of compiler directive
based loop-level parallelism was starting to show significant levels of speedup and overall levels
of performance. At this point, rather than stopping, Marek Behr decided to take the extreme step
of manually implementing loop-level parallelism on the Cray T3D using message-passing code.
By using the SHMEM (Cray's so-called "shared memory" primitives, also known as single-sided
message-passing primitives), he was able to demonstrate a level of performance that several
times exceeded the performance when the CRAFT model was used. While the per-processor
level of performance was less than had been hoped for, it was now at least high enough that it
would be possible to achieve acceptable levels of performance for all but the smallest problems
by using larger numbers of processors.

Daniel Pressel then tried to extend the shared memory version of the code to support the
Convex Exemplar, which claimed to be a simple extension of the shared memory environment.
Unfortunately, while this claim was largely correct, he was never able to achieve acceptable
levels of performance when using more than eight processors (although the performance with
eight processors was superior to that of a single processor of a Cray C-90). Following this, work
began to test an older version of the SGI Challenge at ARL and a newly arrived RIOOOO-based
SGI Challenge at the Tank-Automotive Command (TACOM) Distributed Center. Both of these
efforts were fully successful and allowed us to develop additional code modification to support a
wider range of system configurations.

46

Following this, the shared memory version of the code was rapidly transferred to the SGI
Origin 2000 when it arrived at the newly created ARL Major Shared Resource Center (MSRC).
At about the same time the Army High Performance Computing Research Center (AHPCRC),
which was now referred to as a distributed center, gained access to a succession of Cray T3Es.
The distributed memory version of the code was rapidly transferred to these systems. After this,
significant additional improvements were demonstrated on the Origins as larger and faster
systems were brought on line. Currently, the largest Origins in the Department of Defense (DoD)
HPC modernization program have 128 processors, with plans under way to create some 256-
processor systems. Unfortunately, it is not clear to what extent this code will be able to take
advantage of the 256-processor system. Also, some of the systems have been upgraded from
195-MHz (390 Mflops) processors to either 250-MHz (500 Mflops) or 300-MHz (600 Mflops)
R12000 processor-based systems.

At the same time, the AHPCRC and the MSRC at the U.S. Army Engineering Research and
Development Center (ERDC) obtained Cray T3E 1200s with more than 200 processors each,
while the MSRC at Naval Oceanographic Office (NAVO) has taken delivery of a Cray T3E 900
with more than 900 processors in it. While for most problems this is more hardware than is
reasonable to use for just one job, it has allowed Marek Behr to demonstrate highly desirable
levels of performance on these machines. Subsequently, he ported this version of the code to the
SGI Origin 2000 (although at a lower level of performance than that achieved with the shared
memory version of the code). He also created a version of the code that uses only MPI calls for
use on the IBM SP. Unfortunately, tests run with this code on the IBM SP at the ERDC MSRC
have proved to be somewhat disappointing. Presumably, this is the result of the IBM SP having
a larger latency when passing messages between processors, which severely impedes the
performance of codes such as this one, which frequently passes huge numbers of small messages.
A more detailed description of this effort is given in Section 2.3.2 in the main body of this report.

4. PERFORMANCE METRICS FOR PARALLEL PROGRAMS

Traditionally, talks concerning the performance of parallel programs have stressed the
scalability of the program(s) being discussed. This project has taken a very different point of
view. It has been based on the assumption that from the standpoint of performance, the two
things that really matter are

a. When you are talking about a single job, what matters is the time to completion.

b. When you are talking about a series of jobs, what matters is the overall throughput. This
is a function of how efficiently the hardware is being used, the performance of a single job on the
hardware (note in this case, one can frequently achieve better levels of throughput by using fewer
processors per job but running more jobs at once with a higher level of parallel efficiency), and
the amount of hardware that is available upon which to run the jobs.

This does not mean that we do not consider parallel speedup and parallel efficiency to be
important. Rather, we consider it to be only part of the whole story. The remaining parts of the
story are

47

a. The raw performance of the processors;

b. The number of processors that are readily available (this is a function of usage by other
users, system configurations, the amount of hardware that was purchased, and probably other
factors as well);

c. Serial efficiency. If the job is not efficiently using its processors, then scaling to larger
numbers of processors will be of questionable value. Our experience (as well as that of others)
with the CRAFT model on the Cray T3D is an excellent example of this point.

d. The efficiency of the algorithm being used. Many of the early success stories of parallel
computing involved algorithms that were really inefficient but were also extremely easy to
parallelize (e.g., Monte Carlo methods). As a result, one could get very high levels of floating
point performance and still have a slowly running job.

e. Any hidden inefficiencies associated with the parallelization of the algorithm. A simple
example of this is to perform the same calculation on every processor to avoid the need for
communication. This can improve the run time of the job, but it can also inflate the operation
count. The program should get credit for the faster run time, but one needs to discount the added
operations before calculating things like Mflops or serial efficiency. In other cases, the
parallelization technique might make the operation count a function of the number of processors
being used (e.g., 0[log{n}]). This can still result in parallelization being a success; however, it
will be a much smaller success (assuming that this occurs in a key portion of the program).

Our reasons for being concerned with these issues are simply stated; we made every effort
to achieve very high levels of performance based on wall clock time, knowing full well that there
would be significant limits on the scalability of these codes. As a result, the performance of the
shared memory code running on the Origin 2000 exceeds that of the distributed memory version
of the code running on a Cray T3E-1200 (when using the same numbers of processors), even
though the Cray T3E-1200 is rated (and sold) on a per-processor basis as being three times as fast
as the Origin 2000. Furthermore, when looking at other benchmarks run on various versions of
the Cray T3E (all of which were supposed to have faster processors than the Origin 2000), we
find that the per processor Mflops delivered by our code is superior to what other researchers are
seeing for their codes on the Cray T3E. Finally, researchers at the National Center for
Atmospheric Research (NCAR) have reported that one of their climate models runs noticeably
faster on an Origin than it does on the Cray T3E (like our code, this model is not highly scalable,
so this is an important result).

5. LIMITATIONS ON THE PARALLEL PERFORMANCE OF THE CODE

Several limitations are inherent with the use of loop-level parallelism, which will limit the
achievable levels of parallel speedup when larger numbers of processors are used. Taking a
quick look at these limitations,

a. Since we are writing the individual loops to execute in parallel, the available parallelism
is limited by the number of iterations in the loop. In some cases, it is possible to merge two or

48

more loops in a loop nest to effectively eliminate this limitation (something that was done with
the distributed memory version of the code but not the shared memory version of the code).
However, if there is a loop dependency in all but one direction, it will not be possible to make
this transformation. Furthermore, if some of the loops are prohibited from making the
transformation, then making the transformation on the remaining loops may be of less value.

b. An overhead cost is associated with getting in and out of parallel sections of code. At
the same time, loop-level parallelism will almost always have significantly less work per
synchronization/communication event than is observed in message passing code based on
domain decomposition. As a result, on a shared memory system it may be desirable to leave
some of the loops unparallelized (this may not be an option in a distributed memory environment).
This is especially likely to be the case in some of the boundary condition routines. Unfortunately,
when 100 or more processors are used, this serial code is likely to dominate the run time
(Amdahl's Law).

c. There can also be performance issues when one is writing code loops with moderate
amounts of work when the number of processors approaches the available level of parallelism.
In general, the overhead cost need not dominate the performance of these loops; however, it may
have an impact that cannot be entirely ignored. This effect is comparable to the way the ratio
between computation and communication becomes unfavorable for traditional codes as the
number of processors increases (for fixed size problems).

d. A direct result of parallelizing some or all of the loops in only one direction is that the
available parallelism is roughly equal to the cube root of the number of grid points in the zone
being processed (square root for 2-D problems). This violates one of the key assumptions of
scaled speedup, that the available parallelism is proportional to the problem size. As a result, any
metrics based on the concept of scaled speedup are of limited applicability.

e. Another direct consequence of limited amounts of parallelism is that a plot of
performance (or if one prefers, speedup) as a function of the number of processors being used
will have a staircase appearance for large numbers of processors. For example, if a loop has 100
units of parallelism, then jobs using 25 to 33 processors will all run at the same speed. Jobs
using 34 to 49 should run 33% faster than that. Jobs using 50 to 99 will run twice as fast as the
25-processor job. Finally, when 100 processors are used, the peak speed of 4 times as fast as the
25-processor job will be obtained. It is important to understand that this effect does not depend
on hardware limitations, nor is it an example of Amdahl's Law. It is an inherent result of integer
division. Of course, the extent to which this effect is actually observed is likely to be
complicated by other factors that are discussed in Section 6 of this appendix, so the predicted
performance increases are really for the ideal case.

6. ADDITIONAL CONSIDERATIONS

The previous list of limitations is entirely theoretical in nature. In addition to them, there
are the following practical considerations:

49

a. Many jobs will perform I/O at the beginning and/or the end of every run. In general, this
I/O will not be parallelized (some systems still do not support parallel I/O, while on many
systems, it can be counter productive).

b. It takes time to allocate memory (especially for large memory jobs using gigabytes of
memory). Furthermore, on some systems, the run time for a job will include the time required
for the system to de-allocate the memory after the job has completed.

c. It is common practice when performing timed runs for benchmarking purposes to keep
the runs short (as opposed to running them to convergence).

If one normally executes large numbers of time steps in a single run (e.g., going to
convergence in just one run), then it might be totally reasonable to include the initialization and
termination costs when performing benchmark runs. This can also be the case when one is trying
to benchmark the performance of one or more jobs on a system for procurement purposes.
However, for the purpose of benchmarking CHSSI software, we feel that it is best if these effects
have been subtracted from the run time. While there are many ways in which this can be done,
the simplest one, and the one that has been used for this report is to do two sets of runs. One
involving larger numbers of time steps (e.g., 50 to 100) and one involving smaller numbers of
time steps (e.g., 1 to 10). On a suitably quiet system, subtracting one set of runs from the other
should give a good estimate of the asymptotic behavior of the code per time step. On a system
shared with other users, the results are likely to have some noise, although the amount of noise
need not be large if the system is not overloaded (on overloaded systems, a number of effects
come into play that will make it all but impossible to get useful numbers).

7. THE QUESTION OF METRICS

As with any good research and development project, one needs metrics for judging the
success of a project. One approach would be to compare the wall clock time of this code to that
of other codes doing the same problem. This would have the strong advantage of helping to test
the claims that we had an efficient serial implementation and an efficient algorithm, and therefore
might not need the same level of parallelism to be of significant value. For whatever reason, this
has not been done.

A second possibility, and one that was heavily used at the start of this project, is to compare
the performance (again in terms of wall clock time) for the various combinations of system/
versions of the code against each other and against the performance of the original vector-
optimized code on both the C-90 (where it was exceptional) and on the SGI Power Challenge
(where it performed poorly). Again, if one assumes that the performance of a single processor of
a C-90 provided acceptable levels of performance for a particular problem, then this approach
can allow one to estimate which problems can be tackled on each system and how much
hardware will be required. This approach also has the advantage of allowing one to look at real-
world considerations such as the availability of sufficient memory to run the job on the different

50

platforms, and the time spent in the queue. While this approach has significant merit, its
importance has been substantially diminished.

A third possibility is to measure scaled speedup (this is also known as soft scalability). This
method was developed by Sandia National Laboratories, Albuquerque, New Mexico, and has been
used on many projects. However, there are some serious problems with this approach. The first
is, as noted in the Section 5 of this appendix, that the approach makes assumptions that do not
apply to this code; therefore, it is not a particularly appropriate metric to use in this case. The
second problem is that the approach assumes that the current problem size is running efficiently
and fast enough when N processors are used. If this is the case, then when a problem twice the
size is confronted and 2N processors are used, one would still be happy with the performance.
However, the approach fails to address the situation when the speed or efficiency for the current
problem size is considered to be unacceptable. The third problem is that the approach assumes
that one really wants to be running a bigger problem. If that is not the case, then scaled speedup
is of little or no value even in cases when the other two objections do not apply.

The fourth and final possibility that we will consider is the case of fixed size speedup. The
proponents of scaled acceleration will point out that for large enough numbers of processors this
will always result in problems with both Amdahl's Law and with a poor ratio between
communication and computation. They are absolutely right. However, if one has a problem with
a limited level of parallelism, these objections may or may not be important. Continuing, it is
natural to want the performance to double when the number of processors being used is doubled.
In fact, when confronting problems involving large amounts of parallelism, this is the ideal
behavior. It is also the behavior that will help one achieve the best use of the hardware (all
things being equal). However, in the case of codes with a high level of algorithmic efficiency
and serial efficiency, it may be reasonable to relax this requirement slightly. In particular, in
Section 5 of this appendix, it was shown that the ideal behavior for codes with limited levels of
parallelism is a stair-stepping behavior. Therefore, we suggest that if the stair-stepping behavior
can be adequately predicted, that behavior should be used as the basis for this metric. In cases
when this cannot be done, one might want to slightly adjust the acceptable level of parallel
efficiency (e.g., decreasing it by 5% to 10% for 30 to 50 processors, and 10% to 20% for 50 to
100 processors). This still leaves the project responsible for the way the code interacts with the
hardware, the effects of Amdahl's Law, and several other effects that will frequently result in less
than ideal behavior. The one remaining sticking point is to determine things such as what
problem sizes will be run and how many processors need to be used for each of the problems or
problem sizes.

51

INTENTIONALLY LEFT BLANK

52

APPENDIX C

ZNSFLOW CHSSI PROJECT MILESTONES

53

INTENTIONALLY LEFT BLANK

54

ZNSFLOW CHSSI Project Milestones

The ZNSFLOW CHSSI project took place over several years. It is difficult to plan
software development over a span of years. Some of the particular difficulties of software
development are keeping pace with developing hardware and upgraded compilers, operating
systems, and scalable computer models. These and other factors forced many modifications of
the original ZNSFLOW development plan. Milestone charts provide documentation to measure
the development of the ZNSFLOW software and progress of the overall CHSSI project and
provide some insight for visualizing the development path of the final product. Following are
milestone charts that provide a time table for the development of the ZNSFLOW CHSSI project.

55

0)
(0

CO
C7) en &

00
CO

CD
CD

1

en
en

«3 ■ ■ C) > C7 a. u.
fll o 3 3 CD lU 0 3 CD CD

fl> < -3 ~3 Q «> z < CO C/J
rf
75 CD (D h- O) CO CO en en
c c en O) cn CO O) CD 05 o>
u. CO

a. CO

2
o
CD a

CO

2
c5
Z

CO

2
CO

2
CO

75
3

m m
81 en •
«n <) o o
CD

5
< O O

r-~ 00
C en o

CD
CO c c n 3 3

~3 ~3

75
75
3

CO 00
en ■

i_ >i n O O m
75
O
08

< u S

r
00 CO

CO (0 en irr a> n 3 (.U
t- < ^

c ^_ f- r>~ o en i en
** m

ci> CO O -i o
A c < < U
JO p

... .
o <l) r> 00

CO a
£

C
CO

a.
i

en
co
2

75
3

CO K
O) en

i
1

c
o
c

I
i Q.

<
c
3
-3

c
(0

CD
en

1

a. Q.
<

CO

0

"8
S

c ■? o O
a. £
8

E
a>

CD
£
Q.
O
a)
>

C
g
75.
O

w
E
CD

2 a.

in
E
CD

2
Q.
CT

CD

CO

<c

I
c
g

0)
en
c

s c
0

•**
ai c o

■•"■

a> a 75.
E

LU
Ü
Q

W
CD
(-
75

O

To o

IX
_I

T5

S co
a.
0

CO

Q.
3
2

To
75
CD

E
CO

■c
V)

75
CO
"7

CO CD E
3 £ 8

0
8 0

I CO N N CO Q O m _J 0 UL

"^
C\j CJ CO 1""

CO
CM

CO

■* in CD

u
's
T3
(U

J3 o
a)
c
o
0)

I
co
2
N

U
e
3

56

Milestone Item / Description Start Complete

Plan Actual Plan Actual
1 Software Development:

1.1 Implicit ZNS: Apr-96 Apr-96 Mar-99 Jul-99
1.1.1 Scalable Algorithm (SA) Apr-96 Apr-96 Dec-97 Dec-97

1.1.1.1 SA:PCA-singlenode Apr-96 Apr-96 Feb-97 Feb-97
1.1.1.2 SA:Origin2000 single node Apr-97 Apr-97 Dec-97 Dec-97
1.1.1.3 SA:Origin2000 multiple node Sep-97 Jan-98 Dec-97 Dec-97
1.1.1.4 SA:T3D Apr-96 Apr-96 Jun-97 Jun-97

1.1.1.5 SA:T3E Apr-97 Apr-97 Dec-98 Dec-98
1.1.2 Restructure Code (RC) Aug-96 Aug-96 Jun-98 Jun-98
1.1.3 Pointwise Turbulence Model Jun-97 Apr-98 Oct-98 Mar-99
1.1.4 Merge with DICE Jan-97 Jan-97 May-98 May-98
1.1.5 Chimera (C) Sep-96 Sep-96 Dec-97 Dec-97

1.1.5.1 C: Origin 2000 Sep-96 Sep-96 Sep-97 Sep-97
1.1.5.2 C:T3E Nov-97

1.1.9 Alpha Release Jun-97 Jun-97 Sep-98 Sep-98
1.1.10 Beta Release Jun-98 Jun-98 Sep-99 Sep-99

Figure C-2. ZNSFLOW Milestone Schedule Continued.

I Milestone / Item Description Start Complete
I Plan Actual Plan Actual

1.2 DICE Environment Jan-97 Jan-97 May-98 Jul-98
1.2.1 common grid file structure Mar-97 Mar-97 Sep-97 Sep-97
1.2.2 common q file structure Jun-97 Jun-97 Dec-97 Dec-97
1.2.3 GUI for Implicit ZNS input Jun-97 Jun-97 May-98 Jul-98

1.2.4 Visualization Sep-96 Sep-96 May-98 Jun-98

1.2.4.1 Planes Jan-97 Jan-97 Apr-97 May-97
1.2.4.2 Isosurf aces Jan-97 Jan-97 Jun-97 Jun-97

1.2.4.3 Ensight Interface Jan-97 Jan-97 May-98 Dec-97

1.2.6 Grid Generators Sep-97 Sep-97 Oct-98 Dec-98
1.2.6.1 Genie May-98 May-98 Oct-98 Dec-98

Figure C-3. ZNSFLOW Milestone Schedule Continued.

57

Milestone/ Item Description Start Complete
Plan Actual Plan Actual

2 Test and Evaluation
2.1 Suite of graded test problems Apr-96 Apr-96 Dec-97 Dec-97

2.1.1 Uniform flow Jan-97 Feb-97 Mar-97 Mar-97
2.1.2 Flat plate boundary layer Feb-97 Feb-97 Apr-97 Mar-98

2.1.3 KTA missile Apr-96 Apr-96 Sep-97 Sep-97

2.1.4 Spherical Nose Cap Jun-96 Jun-97 Sep-97 Sep-97

2.1.5 SOCBT Feb-97 Apr-97 Jul-97 Jul-97
2.2 Validation plan Apr-96 Apr-96 Sep-97 Apr-98

Figure C-4. ZNSFLOW Milestone Schedule Continued.

Milestone / Item Description Start Complete
Plan Actual Plan Actual

3 Demonstration Problems
3.1 Guided MLRS Missile Apr-98 Sep-98 Mar-99 Mar-99

3.1.1 Problem definition Apr-98 Sep-98 Sep-98 Sep-98
3.1.2 Grid definition Apr-98 Sep-98 Sep-98 Sep-98
3.1.3 Calculation on Origin 2000 Dec-98 Dec-98 Jan-99 Mar-99

3.2 BAT projectile Apr-96 Apr-96 Nov-98 Sep-98

3.2.1 Problem definition Apr-96 Apr-96 May-96 May-96
3.2.2 Grid definition Dec-96 Dec-96 Jan-97 Jan-98
3.2.3 Calculation on Origin 2000 Jun-97 Jan-98 Apr-98 Sep-98

Figure C-5. ZNSFLOW Milestone Schedule Continued.

58

Milestone / Item Description Start Complete
| Plan Actual Plan Actual

4 4. User group meetings:
4.1 4QFY96 Aug-96 Aug-97
4.2 3QFY97 Aug-97 Oct-97
4.3 3QFY98 Aug-98 Oct-98
4.4 3QFY99 Mar-99 Aug-99

5 Documentation:
5.1 ARL CHSSI home page Sep-97 Jan-98 Mar-99 Mar-99
5.2 ZNS user/technical manuals Jun-96 Jun-97 Mar-99 Mar-99
5.3 Establish training classes Aug-98 Oct-98 Mar-99 Aug-99

6 Reports:
6.1 FY96 end year Nov-96 Nov-96
6.2 FY97 mid year Jun-97 Jul-97
6.3 FY97 end year Nov-97 Dec-97
6.4 FY98 mid year Jun-98 Jun-98
6.5 FY98 end year Nov-98 Jan-99
6.7 FY99 Final Report Mar-99 Sep-99

Figure C-6. ZNSFLOW Milestone Schedule Continued.

59

INTENTIONALLY LEFT BLANK

60

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FTBELVOIR VA 22060-6218

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TA REC MGMT
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CI LL TECH LIB
2800 POWDER MILL RD
ADELPHIMD 207830-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL DD
2800 POWDER MILL RD
ADELPHIMD 20783-1197

CDR US ARMY ARDEC
ATTN AMSTEAETA R DEKLEINE

CNG R BOTTICELLI
HHUDGINS JGRAU
S KAHN W KOENIG

PICATINNY ARSENAL NJ 07806-5001

CDR US ARMY ARDEC
ATTN AMSTE CCH V PAUL VALENTI
PICATINNY ARSENAL NJ 07806-5001

CDR US ARMY ARDEC
ATTN SFAE FAS SD MIKE DEVINE
PICATINNY ARSENAL NJ 07806-5001

USAF WRIGHT AERONAUTICAL LABS
ATTN AFWAL FIMG DR J SHANG

MR N E SCAGGS
WPAFB OH 45433-6553

AIR FORCE ARMAMENT LAB
ATTN AFATL/FXA STEPHEN C KORN

BRUCE SIMPSON DAVEBELK
EGLIN AIR FORCE BASE FL 32542-5434

NO. OF
COPIES

1

ORGANIZATION

CDRNSWC
CODE B40 DR W YANTA
DAHLGREN VA 22448-5100

CDR NSWC
CODE 420 DRAWARDLAW
INDIAN HEAD MD 20640-5035

CDR NSWC
ATTN DRF MOORE
DAHLGREN VA 22448

NAVAL AIR WARFARE CENTER
ATTN DAVID FINDLAY
MS3BLDG2187
PATUXENT RIVER MD 20670

DIR NASA
LANGLEY RESEARCH CENTER
ATTN TECH LIBRARY

MR D M BUSHNELL
DR M J HEMSCH
DR J SOUTH

LANGLEY STATION
HAMPTON VA 23665

ARPA
ATTN DR P KEMMEY

DR JAMES RICHARDSON
3701 NORTH FAIRFAX DR
ARLINGTON VA 22203-1714

DIR NASA
AMES RESEARCH CENTER
T27B-1 L SCHIFF
T27B-1 T HOLST
MS 237-2 D CHAUSSEE
MS 269-1 MRAI
MS 200-6 P KUTLER
MS 258 1 B MEAKTN
MOFFETT FIELD CA 94035

USMA
DEPT OF MECHANICS
ATTN LTC ANDREW L DULL

M COSTELLO
WEST POINT NY 10996

61

NO. OF
COPIES ORGANIZATION

UNIV OF CALIFORNIA DAVIS
DEPT OF MECHANICAL ENGRG
ATTN PROF H A DWYER

PROF M HAFEZ
DAVIS CA 95616

AEROJET ELECTRONICS PLANT
ATTN DANIEL W PILLASCH
B170 DEPT 5311
PO BOX 296
1100 WEST HOLLYVALE STREET
AZUSA CA 91702

MIT
TECH LIBRARY
77 MASSACHUSETTS AVE
CAMBRIDGE MA 02139

GRUMANN AEROSPACE CORP
AEROPHYSICS RESEARCH DEPT
ATTN DR R E MELNIK
BETHPAGE NY 11714

MICRO CRAFT INC
ATTN DRJOHNBENEK

NORMAN SUHS
207 BIG SPRINGS AVE
TULLAHOMA TN 37388-0370

LANL
ATTN MRBILLHOGAN
MS G770
LOS ALAMOS NM 87545

METACOMP TECHNOLOGIES INC
ATTN S R CHAKRAVARTHY
650 HAMPSHIRE ROAD
SUITE 200
WESTLAKE VILLAGE CA 91361-2510

ROCKWELL SCIENCE CENTER
ATTN S V RAMAKRISHNAN

V V SHANKAR
1049 CAMINO DOS RIOS
THOUSAND OAKS CA 91360

ADVANCED TECHNOLOGY CTR
ARVIN/CALSPAN
AERODYNAMICS RESEARCH DEPT
ATTN DR M S HOLDEN
PO BOX 400
BUFFALO NY 14225

NO. OF
COPIES

1

ORGANIZATION

UNIV OF ILLINOIS AT URBANA CHAMPAIGN
DEPT OF MECH & IND ENGINEERING
ATTN DRJCDUTTON
URBANA IL 61801

UNIVERSITY OF MARYLAND
DEPT OF AEROSPACE ENGRG
ATTN DRJD ANDERSON JR
COLLEGE PARK MD 20742

UNIVERSITY OF NOTRE DAME
DEPT OF AERONAUTICAL & MECH ENGRG
ATTN PROF T J MUELLER
NOTRE DAME IN 46556

UNIVERSITY OF TEXAS
DEPT OF AEROSPACE ENGRG MECH
ATTN DRDS DOLLING
AUSTIN TX 78712-1055

UNIVERSITY OF DELAWARE
DEPT OF MECHANICAL ENGRG
ATTN DR JOHN MEAKIN
NEWARK DE 19716

COMMANDER USAAMCOM
ATTN AMSAM RD SS AT

ERIC KREEGER
GEORGE LANDINGHAM
CLARK D MIKKELSON
ED VAUGHN

REDSTONE ARSENAL AL 35898-5252

LOCKHEED MARTIN VOUGHT SYS
PO BOX 65003 M/S EM 55
ATTN PERRY WOODEN

W B BROOKS
JENNIE FOX
ED MCQUILLEN

DALLAS TX 75265-0003

COMMANDER
US ARMY TACOM-ARDEC BLDG 162S
ATTN AMCPM DS MO

PETER J BURKE
PICATINNY ARSENAL NJ 07806-5000

DIR NASA
LANGLEY RESEARCH CENTER
MS 499 P BUNING
HAMPTON VA 23681

62

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLCI LP (TECH LIB)
BLDG305 APGAA

CDR US ARMY ARDEC
BRING TABLES BRANCH
ATTN R LIESKE R EITMILLER

F MIRABELLE
BLDG 120

NO. OF
COPIES ORGANIZATION

20 DIR USARL
ATTN AMSRLWMBC PPLOSTINS

MBUNDY G COOPER
H EDGE (5 CYS) J GARNER
B GUIDOS K HEAVEY
D LYON A MIKHAIL
V OSKAY J SAHU
K SOENCKSEN
D WEBB P WEINACHT
SWILKERSON AZIELINSKI

BLDG 390

DIR USARL
ATTN AMSRLCI
BLDG 394

N RADHAKRISHNAN

DIR USARL
ATTN AMSRL CI H D HISLEY

D PRESSEL C ZOLTANI
C NIETUBICZ

BLDG 394

DIR USARL
ATTN AMSRL CI H
BLDG 328

WSTUREK

DIR USARL
ATTN AMSRL WM I MAY

L JOHNSON
BLDG 4600

DIR USARL
ATTN AMSRL WM B A W HORST JR

W CIEPIELLA
BLDG 4600

DIR USARL
ATTN AMSRL WM BD B FORCH
BLDG 4600

DIR USARL
AMSRL WM BE MNUSCA

J DESPIRITO
BLDG 390

DIR USARL
ATTN AMSRL WM BF J LACETERA
BLDG 120

DIR USARL
ATTN AMSRL WM TB R LOTTERO
BLDG 309

ABSTRACT ONLY

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TP TECH PUB BR
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIR USARL
ATTN AMSRL WM B E M SCHMIDT
BLDG 390A

DIRARL
ATTN AMSRL WM BA W D'AMICO

FBRANDON TBROWN
L BURKE J CONDON
B DAVIS M HOLLIS

BLDG 4600

63

INTENTIONALLY LEFT BLANK

64

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
qatherinq and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 2000

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE
Common High Performance Computing Software Support Initiative (CHSSI) Computational Fluid
Dynamics (CFD)-6 Project Final Report: ARL Block-Structured Gridding Zonal Navier-Stokes Flow
(ZNSFLOW) Solver Software

6. AUTHOR(S)

Edge, H.L.; Sahu, J.; Heavey, K.R.; Weinacht, P.; Sturek, W.B.; Pressel, D.M.; Zoltani, C.K.; Nietubicz,
C.J. (all of ARL); Clarke, J. (Raytheon Systems); Behr, M. (Rice University); Collins, P. (Department of
the Treasury)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

5. FUNDING NUMBERS

PR: 1L162628AH80

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-2084

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report presents an overview of the software developed under the common high performance computing software support
initiative (CHSSI), computational fluid dynamics (CFD)-6 project. Under the project, a zonal Navier-Stokes flow solver tested
and validated via years of productive research at the U.S. Army Research Laboratory was rewritten for scalable parallel
performance on both shared memory and distributed memory high performance computers. At the same time, a graphical user
interface (GUI) was developed to help the user set up the problem, provide real-time visualization, and execute the solver. The
GUI is not just an input interface but provides an environment for the systematic, coherent execution of the solver, thus making
it a more useful, quicker and easier application tool for engineers. Also part of the CHSSI project is a demonstration of the
developed software on complex applications of interest to the Department of Defense (DoD). Results from computations of 10
brilliant antitank (BAT) submunitions simultaneously ejecting from a single Army tactical missile and a guided multiple launch
rocket system missile are discussed. Experimental data were available for comparison with the BAT computations. The CFD
computations and the experimental data show good agreement and serve as validation for the accuracy of the solver. The
software has been written with large memory requirements and scalability in mind. For a grid size of 59 million points, the
performance achieved on an Silicon Graphics, Incorporated, Origin 2000 with 96 processors is 18 times the performance that
could be achieved via a computer with the processing speed of a single Cray C-90 processor.

14. SUBJECT TERMS

CHSSI
computational fluid dynamics

high performance computing
missiles

Navier-Stokes

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

80
16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 65
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

